Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
import os
|
4 |
from collections.abc import Iterator
|
5 |
from threading import Thread
|
@@ -8,32 +6,24 @@ import gradio as gr
|
|
8 |
import torch
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
10 |
|
11 |
-
#
|
12 |
-
# 1) Custom Pastel Gradient CSS, and force text to black
|
13 |
-
#
|
14 |
CUSTOM_CSS = """
|
15 |
.gradio-container {
|
16 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
17 |
-
color: black;
|
18 |
}
|
19 |
"""
|
20 |
|
21 |
-
#
|
22 |
-
# 2) Description: "Bonjour Dans le chat du consentement" in black
|
23 |
-
# Also add a CPU notice in black if no GPU is found.
|
24 |
-
#
|
25 |
DESCRIPTION = """# Bonjour Dans le chat du consentement
|
26 |
Mistral-7B Instruct Demo
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
-
DESCRIPTION += "Running on CPU - This is likely too large to run effectively.\n"
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
# 3) Load Mistral-7B Instruct (requires gating, GPU recommended)
|
36 |
-
#
|
37 |
if torch.cuda.is_available():
|
38 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
39 |
tokenizer = AutoTokenizer.from_pretrained(
|
@@ -46,26 +36,25 @@ if torch.cuda.is_available():
|
|
46 |
device_map="auto",
|
47 |
trust_remote_code=True
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
def generate(
|
51 |
-
message: str,
|
52 |
-
chat_history: list[dict],
|
53 |
-
) -> Iterator[str]:
|
54 |
-
"""
|
55 |
-
Minimal chat generation function: no sliders, no extra params.
|
56 |
-
"""
|
57 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
58 |
|
59 |
-
# Convert conversation to tokens
|
60 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
61 |
-
# If it exceeds max token length, trim
|
62 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
63 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
64 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
65 |
|
66 |
input_ids = input_ids.to(model.device)
|
67 |
|
68 |
-
# Use a streamer to yield tokens as they are generated
|
69 |
streamer = TextIteratorStreamer(
|
70 |
tokenizer,
|
71 |
timeout=20.0,
|
@@ -73,18 +62,16 @@ def generate(
|
|
73 |
skip_special_tokens=True
|
74 |
)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
)
|
86 |
|
87 |
-
# Run generation in a background thread
|
88 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
89 |
t.start()
|
90 |
|
@@ -93,16 +80,11 @@ def generate(
|
|
93 |
outputs.append(text)
|
94 |
yield "".join(outputs)
|
95 |
|
96 |
-
#
|
97 |
-
# 4) Build the Chat Interface
|
98 |
-
# - No additional sliders
|
99 |
-
# - No pre-filled example questions
|
100 |
-
#
|
101 |
demo = gr.ChatInterface(
|
102 |
fn=generate,
|
103 |
description=DESCRIPTION,
|
104 |
css=CUSTOM_CSS,
|
105 |
-
examples=None,
|
106 |
type="messages"
|
107 |
)
|
108 |
|
|
|
|
|
|
|
1 |
import os
|
2 |
from collections.abc import Iterator
|
3 |
from threading import Thread
|
|
|
6 |
import torch
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
|
|
|
|
|
|
|
9 |
CUSTOM_CSS = """
|
10 |
.gradio-container {
|
11 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
12 |
+
color: black;
|
13 |
}
|
14 |
"""
|
15 |
|
|
|
|
|
|
|
|
|
16 |
DESCRIPTION = """# Bonjour Dans le chat du consentement
|
17 |
Mistral-7B Instruct Demo
|
18 |
"""
|
19 |
|
20 |
+
MAX_INPUT_TOKEN_LENGTH = 4096 # just a default
|
|
|
21 |
|
22 |
+
# Define model/tokenizer at the top so they're visible in all scopes
|
23 |
+
tokenizer = None
|
24 |
+
model = None
|
25 |
|
26 |
+
# Try to load the model only if GPU is available
|
|
|
|
|
27 |
if torch.cuda.is_available():
|
28 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
29 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
36 |
device_map="auto",
|
37 |
trust_remote_code=True
|
38 |
)
|
39 |
+
else:
|
40 |
+
# Show a warning in the description
|
41 |
+
DESCRIPTION += "\n**Running on CPU** — This model is too large for CPU inference!"
|
42 |
+
|
43 |
+
def generate(message: str, chat_history: list[dict]) -> Iterator[str]:
|
44 |
+
# If there's no GPU (thus no tokenizer/model), return an error
|
45 |
+
if tokenizer is None or model is None:
|
46 |
+
yield "Error: No GPU available. Unable to load Mistral-7B-Instruct."
|
47 |
+
return
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
50 |
|
|
|
51 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
52 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
53 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
54 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
55 |
|
56 |
input_ids = input_ids.to(model.device)
|
57 |
|
|
|
58 |
streamer = TextIteratorStreamer(
|
59 |
tokenizer,
|
60 |
timeout=20.0,
|
|
|
62 |
skip_special_tokens=True
|
63 |
)
|
64 |
|
65 |
+
generate_kwargs = {
|
66 |
+
"input_ids": input_ids,
|
67 |
+
"streamer": streamer,
|
68 |
+
"max_new_tokens": 512,
|
69 |
+
"do_sample": True,
|
70 |
+
"temperature": 0.7,
|
71 |
+
"top_p": 0.9,
|
72 |
+
"repetition_penalty": 1.1,
|
73 |
+
}
|
|
|
74 |
|
|
|
75 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
76 |
t.start()
|
77 |
|
|
|
80 |
outputs.append(text)
|
81 |
yield "".join(outputs)
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
demo = gr.ChatInterface(
|
84 |
fn=generate,
|
85 |
description=DESCRIPTION,
|
86 |
css=CUSTOM_CSS,
|
87 |
+
examples=None,
|
88 |
type="messages"
|
89 |
)
|
90 |
|