Update app.py
Browse files
app.py
CHANGED
|
@@ -5,34 +5,30 @@ from collections.abc import Iterator
|
|
| 5 |
from threading import Thread
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
-
import spaces
|
| 9 |
import torch
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 11 |
|
| 12 |
#
|
| 13 |
-
# 1) Custom Pastel Gradient CSS
|
| 14 |
#
|
| 15 |
CUSTOM_CSS = """
|
| 16 |
.gradio-container {
|
| 17 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
|
|
|
| 18 |
}
|
| 19 |
"""
|
| 20 |
|
| 21 |
#
|
| 22 |
-
# 2) Description:
|
|
|
|
| 23 |
#
|
| 24 |
-
DESCRIPTION = """# Bonjour Dans le chat du consentement
|
| 25 |
-
|
| 26 |
-
Mistral-7B Instruct Demo
|
| 27 |
"""
|
| 28 |
|
| 29 |
if not torch.cuda.is_available():
|
| 30 |
-
DESCRIPTION +=
|
| 31 |
-
"\n<p style='color:red;'>Running on CPU - This is likely too large to run effectively.</p>"
|
| 32 |
-
)
|
| 33 |
|
| 34 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 35 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 36 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 37 |
|
| 38 |
#
|
|
@@ -41,8 +37,8 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 41 |
if torch.cuda.is_available():
|
| 42 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 43 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 44 |
-
model_id,
|
| 45 |
-
trust_remote_code=True
|
| 46 |
)
|
| 47 |
model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
model_id,
|
|
@@ -54,106 +50,61 @@ if torch.cuda.is_available():
|
|
| 54 |
def generate(
|
| 55 |
message: str,
|
| 56 |
chat_history: list[dict],
|
| 57 |
-
max_new_tokens: int = 1024,
|
| 58 |
-
temperature: float = 0.6,
|
| 59 |
-
top_p: float = 0.9,
|
| 60 |
-
top_k: int = 50,
|
| 61 |
-
repetition_penalty: float = 1.2,
|
| 62 |
) -> Iterator[str]:
|
| 63 |
"""
|
| 64 |
-
|
| 65 |
-
Uses Mistral's 'apply_chat_template' to handle chat-style prompting.
|
| 66 |
"""
|
| 67 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
| 68 |
|
|
|
|
| 69 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
|
| 70 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 71 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 72 |
-
gr.Warning(
|
| 73 |
-
|
| 74 |
-
)
|
| 75 |
input_ids = input_ids.to(model.device)
|
| 76 |
|
|
|
|
| 77 |
streamer = TextIteratorStreamer(
|
| 78 |
-
tokenizer,
|
| 79 |
-
timeout=20.0,
|
| 80 |
-
skip_prompt=True,
|
| 81 |
skip_special_tokens=True
|
| 82 |
)
|
|
|
|
|
|
|
| 83 |
generate_kwargs = dict(
|
| 84 |
-
|
| 85 |
streamer=streamer,
|
| 86 |
-
max_new_tokens=
|
| 87 |
do_sample=True,
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
num_beams=1,
|
| 92 |
-
repetition_penalty=repetition_penalty,
|
| 93 |
)
|
|
|
|
|
|
|
| 94 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 95 |
t.start()
|
| 96 |
|
| 97 |
outputs = []
|
| 98 |
for text in streamer:
|
| 99 |
outputs.append(text)
|
| 100 |
-
# Stream partial output as it's generated
|
| 101 |
yield "".join(outputs)
|
| 102 |
|
| 103 |
#
|
| 104 |
-
# 4) Build the Chat Interface
|
|
|
|
|
|
|
| 105 |
#
|
| 106 |
demo = gr.ChatInterface(
|
| 107 |
fn=generate,
|
| 108 |
description=DESCRIPTION,
|
| 109 |
-
css=CUSTOM_CSS,
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
label="Max new tokens",
|
| 113 |
-
minimum=1,
|
| 114 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
| 115 |
-
step=1,
|
| 116 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
| 117 |
-
),
|
| 118 |
-
gr.Slider(
|
| 119 |
-
label="Temperature",
|
| 120 |
-
minimum=0.1,
|
| 121 |
-
maximum=4.0,
|
| 122 |
-
step=0.1,
|
| 123 |
-
value=0.6,
|
| 124 |
-
),
|
| 125 |
-
gr.Slider(
|
| 126 |
-
label="Top-p (nucleus sampling)",
|
| 127 |
-
minimum=0.05,
|
| 128 |
-
maximum=1.0,
|
| 129 |
-
step=0.05,
|
| 130 |
-
value=0.9,
|
| 131 |
-
),
|
| 132 |
-
gr.Slider(
|
| 133 |
-
label="Top-k",
|
| 134 |
-
minimum=1,
|
| 135 |
-
maximum=1000,
|
| 136 |
-
step=1,
|
| 137 |
-
value=50,
|
| 138 |
-
),
|
| 139 |
-
gr.Slider(
|
| 140 |
-
label="Repetition penalty",
|
| 141 |
-
minimum=1.0,
|
| 142 |
-
maximum=2.0,
|
| 143 |
-
step=0.05,
|
| 144 |
-
value=1.2,
|
| 145 |
-
),
|
| 146 |
-
],
|
| 147 |
-
stop_btn=None,
|
| 148 |
-
examples=[
|
| 149 |
-
["Hello there! How are you doing?"],
|
| 150 |
-
["Can you explain briefly what the Python programming language is?"],
|
| 151 |
-
["Explain the plot of Cinderella in a sentence."],
|
| 152 |
-
["How many hours does it take a man to eat a Helicopter?"],
|
| 153 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
| 154 |
-
],
|
| 155 |
-
type="messages",
|
| 156 |
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
| 159 |
-
demo.queue(
|
|
|
|
| 5 |
from threading import Thread
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import torch
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 10 |
|
| 11 |
#
|
| 12 |
+
# 1) Custom Pastel Gradient CSS, and force text to black
|
| 13 |
#
|
| 14 |
CUSTOM_CSS = """
|
| 15 |
.gradio-container {
|
| 16 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
| 17 |
+
color: black; /* ensure text appears in black */
|
| 18 |
}
|
| 19 |
"""
|
| 20 |
|
| 21 |
#
|
| 22 |
+
# 2) Description: "Bonjour Dans le chat du consentement" in black
|
| 23 |
+
# Also add a CPU notice in black if no GPU is found.
|
| 24 |
#
|
| 25 |
+
DESCRIPTION = """# Bonjour Dans le chat du consentement
|
| 26 |
+
Mistral-7B Instruct Demo
|
|
|
|
| 27 |
"""
|
| 28 |
|
| 29 |
if not torch.cuda.is_available():
|
| 30 |
+
DESCRIPTION += "Running on CPU - This is likely too large to run effectively.\n"
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
| 32 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 33 |
|
| 34 |
#
|
|
|
|
| 37 |
if torch.cuda.is_available():
|
| 38 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 40 |
+
model_id,
|
| 41 |
+
trust_remote_code=True
|
| 42 |
)
|
| 43 |
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
model_id,
|
|
|
|
| 50 |
def generate(
|
| 51 |
message: str,
|
| 52 |
chat_history: list[dict],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
) -> Iterator[str]:
|
| 54 |
"""
|
| 55 |
+
Minimal chat generation function: no sliders, no extra params.
|
|
|
|
| 56 |
"""
|
| 57 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
| 58 |
|
| 59 |
+
# Convert conversation to tokens
|
| 60 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
| 61 |
+
# If it exceeds max token length, trim
|
| 62 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 63 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 64 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 65 |
+
|
|
|
|
| 66 |
input_ids = input_ids.to(model.device)
|
| 67 |
|
| 68 |
+
# Use a streamer to yield tokens as they are generated
|
| 69 |
streamer = TextIteratorStreamer(
|
| 70 |
+
tokenizer,
|
| 71 |
+
timeout=20.0,
|
| 72 |
+
skip_prompt=True,
|
| 73 |
skip_special_tokens=True
|
| 74 |
)
|
| 75 |
+
|
| 76 |
+
# Basic generation settings (feel free to adjust if you want)
|
| 77 |
generate_kwargs = dict(
|
| 78 |
+
input_ids=input_ids,
|
| 79 |
streamer=streamer,
|
| 80 |
+
max_new_tokens=512, # Adjust if you want more or fewer tokens
|
| 81 |
do_sample=True,
|
| 82 |
+
temperature=0.7,
|
| 83 |
+
top_p=0.9,
|
| 84 |
+
repetition_penalty=1.1,
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
+
|
| 87 |
+
# Run generation in a background thread
|
| 88 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 89 |
t.start()
|
| 90 |
|
| 91 |
outputs = []
|
| 92 |
for text in streamer:
|
| 93 |
outputs.append(text)
|
|
|
|
| 94 |
yield "".join(outputs)
|
| 95 |
|
| 96 |
#
|
| 97 |
+
# 4) Build the Chat Interface
|
| 98 |
+
# - No additional sliders
|
| 99 |
+
# - No pre-filled example questions
|
| 100 |
#
|
| 101 |
demo = gr.ChatInterface(
|
| 102 |
fn=generate,
|
| 103 |
description=DESCRIPTION,
|
| 104 |
+
css=CUSTOM_CSS,
|
| 105 |
+
examples=None, # remove example prompts
|
| 106 |
+
type="messages"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
if __name__ == "__main__":
|
| 110 |
+
demo.queue().launch()
|