Update app.py
Browse files
app.py
CHANGED
@@ -5,34 +5,30 @@ from collections.abc import Iterator
|
|
5 |
from threading import Thread
|
6 |
|
7 |
import gradio as gr
|
8 |
-
import spaces
|
9 |
import torch
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
|
12 |
#
|
13 |
-
# 1) Custom Pastel Gradient CSS
|
14 |
#
|
15 |
CUSTOM_CSS = """
|
16 |
.gradio-container {
|
17 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
|
|
18 |
}
|
19 |
"""
|
20 |
|
21 |
#
|
22 |
-
# 2) Description:
|
|
|
23 |
#
|
24 |
-
DESCRIPTION = """# Bonjour Dans le chat du consentement
|
25 |
-
|
26 |
-
Mistral-7B Instruct Demo
|
27 |
"""
|
28 |
|
29 |
if not torch.cuda.is_available():
|
30 |
-
DESCRIPTION +=
|
31 |
-
"\n<p style='color:red;'>Running on CPU - This is likely too large to run effectively.</p>"
|
32 |
-
)
|
33 |
|
34 |
-
MAX_MAX_NEW_TOKENS = 2048
|
35 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
36 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
37 |
|
38 |
#
|
@@ -41,8 +37,8 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
41 |
if torch.cuda.is_available():
|
42 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
43 |
tokenizer = AutoTokenizer.from_pretrained(
|
44 |
-
model_id,
|
45 |
-
trust_remote_code=True
|
46 |
)
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
model_id,
|
@@ -54,106 +50,61 @@ if torch.cuda.is_available():
|
|
54 |
def generate(
|
55 |
message: str,
|
56 |
chat_history: list[dict],
|
57 |
-
max_new_tokens: int = 1024,
|
58 |
-
temperature: float = 0.6,
|
59 |
-
top_p: float = 0.9,
|
60 |
-
top_k: int = 50,
|
61 |
-
repetition_penalty: float = 1.2,
|
62 |
) -> Iterator[str]:
|
63 |
"""
|
64 |
-
|
65 |
-
Uses Mistral's 'apply_chat_template' to handle chat-style prompting.
|
66 |
"""
|
67 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
68 |
|
|
|
69 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
|
|
70 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
71 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
72 |
-
gr.Warning(
|
73 |
-
|
74 |
-
)
|
75 |
input_ids = input_ids.to(model.device)
|
76 |
|
|
|
77 |
streamer = TextIteratorStreamer(
|
78 |
-
tokenizer,
|
79 |
-
timeout=20.0,
|
80 |
-
skip_prompt=True,
|
81 |
skip_special_tokens=True
|
82 |
)
|
|
|
|
|
83 |
generate_kwargs = dict(
|
84 |
-
|
85 |
streamer=streamer,
|
86 |
-
max_new_tokens=
|
87 |
do_sample=True,
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
num_beams=1,
|
92 |
-
repetition_penalty=repetition_penalty,
|
93 |
)
|
|
|
|
|
94 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
95 |
t.start()
|
96 |
|
97 |
outputs = []
|
98 |
for text in streamer:
|
99 |
outputs.append(text)
|
100 |
-
# Stream partial output as it's generated
|
101 |
yield "".join(outputs)
|
102 |
|
103 |
#
|
104 |
-
# 4) Build the Chat Interface
|
|
|
|
|
105 |
#
|
106 |
demo = gr.ChatInterface(
|
107 |
fn=generate,
|
108 |
description=DESCRIPTION,
|
109 |
-
css=CUSTOM_CSS,
|
110 |
-
|
111 |
-
|
112 |
-
label="Max new tokens",
|
113 |
-
minimum=1,
|
114 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
115 |
-
step=1,
|
116 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
117 |
-
),
|
118 |
-
gr.Slider(
|
119 |
-
label="Temperature",
|
120 |
-
minimum=0.1,
|
121 |
-
maximum=4.0,
|
122 |
-
step=0.1,
|
123 |
-
value=0.6,
|
124 |
-
),
|
125 |
-
gr.Slider(
|
126 |
-
label="Top-p (nucleus sampling)",
|
127 |
-
minimum=0.05,
|
128 |
-
maximum=1.0,
|
129 |
-
step=0.05,
|
130 |
-
value=0.9,
|
131 |
-
),
|
132 |
-
gr.Slider(
|
133 |
-
label="Top-k",
|
134 |
-
minimum=1,
|
135 |
-
maximum=1000,
|
136 |
-
step=1,
|
137 |
-
value=50,
|
138 |
-
),
|
139 |
-
gr.Slider(
|
140 |
-
label="Repetition penalty",
|
141 |
-
minimum=1.0,
|
142 |
-
maximum=2.0,
|
143 |
-
step=0.05,
|
144 |
-
value=1.2,
|
145 |
-
),
|
146 |
-
],
|
147 |
-
stop_btn=None,
|
148 |
-
examples=[
|
149 |
-
["Hello there! How are you doing?"],
|
150 |
-
["Can you explain briefly what the Python programming language is?"],
|
151 |
-
["Explain the plot of Cinderella in a sentence."],
|
152 |
-
["How many hours does it take a man to eat a Helicopter?"],
|
153 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
154 |
-
],
|
155 |
-
type="messages",
|
156 |
)
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
-
demo.queue(
|
|
|
5 |
from threading import Thread
|
6 |
|
7 |
import gradio as gr
|
|
|
8 |
import torch
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
10 |
|
11 |
#
|
12 |
+
# 1) Custom Pastel Gradient CSS, and force text to black
|
13 |
#
|
14 |
CUSTOM_CSS = """
|
15 |
.gradio-container {
|
16 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
17 |
+
color: black; /* ensure text appears in black */
|
18 |
}
|
19 |
"""
|
20 |
|
21 |
#
|
22 |
+
# 2) Description: "Bonjour Dans le chat du consentement" in black
|
23 |
+
# Also add a CPU notice in black if no GPU is found.
|
24 |
#
|
25 |
+
DESCRIPTION = """# Bonjour Dans le chat du consentement
|
26 |
+
Mistral-7B Instruct Demo
|
|
|
27 |
"""
|
28 |
|
29 |
if not torch.cuda.is_available():
|
30 |
+
DESCRIPTION += "Running on CPU - This is likely too large to run effectively.\n"
|
|
|
|
|
31 |
|
|
|
|
|
32 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
33 |
|
34 |
#
|
|
|
37 |
if torch.cuda.is_available():
|
38 |
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
39 |
tokenizer = AutoTokenizer.from_pretrained(
|
40 |
+
model_id,
|
41 |
+
trust_remote_code=True
|
42 |
)
|
43 |
model = AutoModelForCausalLM.from_pretrained(
|
44 |
model_id,
|
|
|
50 |
def generate(
|
51 |
message: str,
|
52 |
chat_history: list[dict],
|
|
|
|
|
|
|
|
|
|
|
53 |
) -> Iterator[str]:
|
54 |
"""
|
55 |
+
Minimal chat generation function: no sliders, no extra params.
|
|
|
56 |
"""
|
57 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
58 |
|
59 |
+
# Convert conversation to tokens
|
60 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
61 |
+
# If it exceeds max token length, trim
|
62 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
63 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
64 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
65 |
+
|
|
|
66 |
input_ids = input_ids.to(model.device)
|
67 |
|
68 |
+
# Use a streamer to yield tokens as they are generated
|
69 |
streamer = TextIteratorStreamer(
|
70 |
+
tokenizer,
|
71 |
+
timeout=20.0,
|
72 |
+
skip_prompt=True,
|
73 |
skip_special_tokens=True
|
74 |
)
|
75 |
+
|
76 |
+
# Basic generation settings (feel free to adjust if you want)
|
77 |
generate_kwargs = dict(
|
78 |
+
input_ids=input_ids,
|
79 |
streamer=streamer,
|
80 |
+
max_new_tokens=512, # Adjust if you want more or fewer tokens
|
81 |
do_sample=True,
|
82 |
+
temperature=0.7,
|
83 |
+
top_p=0.9,
|
84 |
+
repetition_penalty=1.1,
|
|
|
|
|
85 |
)
|
86 |
+
|
87 |
+
# Run generation in a background thread
|
88 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
89 |
t.start()
|
90 |
|
91 |
outputs = []
|
92 |
for text in streamer:
|
93 |
outputs.append(text)
|
|
|
94 |
yield "".join(outputs)
|
95 |
|
96 |
#
|
97 |
+
# 4) Build the Chat Interface
|
98 |
+
# - No additional sliders
|
99 |
+
# - No pre-filled example questions
|
100 |
#
|
101 |
demo = gr.ChatInterface(
|
102 |
fn=generate,
|
103 |
description=DESCRIPTION,
|
104 |
+
css=CUSTOM_CSS,
|
105 |
+
examples=None, # remove example prompts
|
106 |
+
type="messages"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
+
demo.queue().launch()
|