|
import os |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
CUSTOM_CSS = """ |
|
.gradio-container { |
|
background: linear-gradient(to right, #FFDEE9, #B5FFFC); |
|
color: black; |
|
} |
|
""" |
|
|
|
DESCRIPTION = """# Bonjour Dans le chat du consentement |
|
Mistral-7B Instruct Demo |
|
""" |
|
|
|
MAX_INPUT_TOKEN_LENGTH = 4096 |
|
|
|
|
|
tokenizer = None |
|
model = None |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "mistralai/Mistral-7B-Instruct-v0.3" |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
else: |
|
|
|
DESCRIPTION += "\n**Running on CPU** β This model is too large for CPU inference!" |
|
|
|
def generate(message: str, chat_history: list[dict]) -> Iterator[str]: |
|
|
|
if tokenizer is None or model is None: |
|
yield "Error: No GPU available. Unable to load Mistral-7B-Instruct." |
|
return |
|
|
|
conversation = [*chat_history, {"role": "user", "content": message}] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
|
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, |
|
timeout=20.0, |
|
skip_prompt=True, |
|
skip_special_tokens=True |
|
) |
|
|
|
generate_kwargs = { |
|
"input_ids": input_ids, |
|
"streamer": streamer, |
|
"max_new_tokens": 512, |
|
"do_sample": True, |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
"repetition_penalty": 1.1, |
|
} |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
description=DESCRIPTION, |
|
css=CUSTOM_CSS, |
|
examples=None, |
|
type="messages" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |
|
|