|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
|
|
css = """ |
|
.gradio-container { |
|
background: linear-gradient(to right, #FFDEE9, #B5FFFC); |
|
} |
|
""" |
|
|
|
title = "Bonjour Dans le chat du consentement" |
|
|
|
|
|
model_id = "mistralai/Mistral-7B-Instruct-v0.3" |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
generate_text = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_length=512, |
|
temperature=0.7, |
|
do_sample=True |
|
) |
|
|
|
def mistral_inference(prompt): |
|
""" |
|
Passes user prompt to the pipeline and returns the generated text. |
|
We'll strip any special tokens and limit the output. |
|
""" |
|
|
|
outputs = generate_text(prompt) |
|
text_out = outputs[0]["generated_text"] |
|
return text_out |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(f"<h1 style='text-align:center;'>{title}</h1>") |
|
user_input = gr.Textbox(label="Entrez votre message ici:", lines=3) |
|
output = gr.Textbox(label="Réponse du Modèle:", lines=5) |
|
send_button = gr.Button("Envoyer") |
|
|
|
|
|
send_button.click(fn=mistral_inference, inputs=user_input, outputs=output) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|