Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,61 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
# Download tokenizer & model
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
checkpoint,
|
11 |
-
device_map="auto", # or "cpu" / "cuda"
|
12 |
-
trust_remote_code=True
|
13 |
-
)
|
14 |
-
# (Optional) set model to inference mode, etc.
|
15 |
-
# model.eval()
|
16 |
-
|
17 |
-
def inference_fn(prompt):
|
18 |
-
# Tokenize
|
19 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
20 |
-
# Generate
|
21 |
-
output_tokens = model.generate(**inputs, max_new_tokens=128)
|
22 |
-
# Decode
|
23 |
-
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
24 |
-
|
25 |
-
# Pastel gradient CSS
|
26 |
css = """
|
27 |
.gradio-container {
|
28 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
29 |
}
|
30 |
"""
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
with gr.Blocks(css=css) as demo:
|
33 |
-
gr.Markdown("<h1 style='text-align:
|
34 |
user_input = gr.Textbox(label="Entrez votre message ici:", lines=3)
|
35 |
output = gr.Textbox(label="Réponse du Modèle:", lines=5)
|
36 |
send_button = gr.Button("Envoyer")
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
|
5 |
+
# 1) Define pastel gradient CSS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
css = """
|
7 |
.gradio-container {
|
8 |
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
|
9 |
}
|
10 |
"""
|
11 |
|
12 |
+
title = "Bonjour Dans le chat du consentement"
|
13 |
+
|
14 |
+
# 2) Load the Mistral model & tokenizer from HF Hub
|
15 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
16 |
+
|
17 |
+
# If you're on a GPU Space, you can do:
|
18 |
+
# device_map = "auto"
|
19 |
+
# torch_dtype = torch.bfloat16
|
20 |
+
# If you're on a CPU-only Space, remove those arguments or set device_map="cpu"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_id,
|
24 |
+
device_map="auto", # "auto" if you have GPU
|
25 |
+
torch_dtype=torch.bfloat16, # for GPU. Remove or use float32 on CPU
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
+
|
29 |
+
# 3) Create a text-generation pipeline
|
30 |
+
generate_text = pipeline(
|
31 |
+
"text-generation",
|
32 |
+
model=model,
|
33 |
+
tokenizer=tokenizer,
|
34 |
+
max_length=512, # adjust as needed
|
35 |
+
temperature=0.7, # adjust as needed
|
36 |
+
do_sample=True
|
37 |
+
)
|
38 |
+
|
39 |
+
def mistral_inference(prompt):
|
40 |
+
"""
|
41 |
+
Passes user prompt to the pipeline and returns the generated text.
|
42 |
+
We'll strip any special tokens and limit the output.
|
43 |
+
"""
|
44 |
+
# The pipeline returns a list of dicts [{"generated_text": "..."}]
|
45 |
+
outputs = generate_text(prompt)
|
46 |
+
text_out = outputs[0]["generated_text"]
|
47 |
+
return text_out
|
48 |
+
|
49 |
+
# 4) Build the Gradio interface with a pastel background & greeting
|
50 |
with gr.Blocks(css=css) as demo:
|
51 |
+
gr.Markdown(f"<h1 style='text-align:center;'>{title}</h1>")
|
52 |
user_input = gr.Textbox(label="Entrez votre message ici:", lines=3)
|
53 |
output = gr.Textbox(label="Réponse du Modèle:", lines=5)
|
54 |
send_button = gr.Button("Envoyer")
|
55 |
|
56 |
+
# Link the button to the inference function
|
57 |
+
send_button.click(fn=mistral_inference, inputs=user_input, outputs=output)
|
58 |
|
59 |
+
# 5) Launch the app
|
60 |
+
if __name__ == "__main__":
|
61 |
+
demo.launch()
|