Spaces:
Sleeping
Sleeping
File size: 12,199 Bytes
b7011f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
from typing import Any, Callable, Dict
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from huggingface_hub import AsyncInferenceClient, InferenceClient
from llama_index.core.base.llms.types import (
CompletionResponseGen,
CompletionResponse
)
class CustomLLMInferenceWrapper(HuggingFaceInferenceAPI):
kwa = dict(
temperature=0.2,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=0.93,
do_sample=True,
seed=42,
)
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
model_name=kwargs.get("model_name")
self._sync_client = InferenceClient(model=model_name)
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
"""Streaming completion endpoint."""
def gen() -> CompletionResponseGen:
for response in self._sync_client.text_generation(prompt,**self.kwa, stream=True, details=True, return_full_text=False):
yield CompletionResponse(text=response.token.text,delta=response.token.text)
return gen()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
return CompletionResponse(
text=self._sync_client.text_generation(
prompt, **{**{"max_new_tokens": self.num_output}, **kwargs}
)
)
import os
from typing import List, Optional
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
llm = CustomLLMInferenceWrapper(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.langchain import LangchainEmbedding
from torch import cuda
store = LocalFileStore("./CacheBackedEmbeddings/")
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
embed_model = HuggingFaceEmbeddings(
model_name=embed_model_id,
model_kwargs={'device': device},
encode_kwargs={'device': device, 'batch_size': 32}
)
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
embed_model, store, namespace="sentence-transformers/all-MiniLM-L6-v2")
emb_model = LangchainEmbedding(cached_embedder)
from llama_index.core import Settings
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import ServiceContext, set_global_service_context
service_context = ServiceContext.from_defaults(
llm_predictor=llm,
embed_model=emb_model,
node_parser=SentenceSplitter(chunk_size=512, chunk_overlap=20),
num_output=512,
context_window=3900,
)
Settings.embed_model = emb_model
Settings.llm=llm
Settings.node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
Settings.num_output = 512
Settings.context_window = 3900
from llama_index.core import PromptTemplate
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
text_qa_template_str = (
"<INST> Context information is"
" below.\n---------------------\n{context_str}\n---------------------\nUsing"
" both the context information and also using your own knowledge, answer"
" the question: {query_str}\nIf the context isn't helpful, you can also"
" answer the question on your own.\n "
" and giving proper instruction to you that tell your name DocuGenie which is large language model (LLM) based Chatbot assistant developed by Mahadi Hassan \n "
" and tell to each and every user that you are capable of giving answers based on the context of web pages and PDFs, acting as a helpful assistant for every user. \n"
" and provide your developer Mahadi Hassan's linkedin url link but when user want to know about you not every time, his linkedin profile link is https://www.linkedin.com/in/mahadise01 <INST/>"
)
text_qa_template = PromptTemplate(text_qa_template_str)
refine_template_str = (
"<INST> The original question is as follows: {query_str}\nWe have provided an"
" existing answer: {existing_answer}\nWe have the opportunity to refine"
" the existing answer (only if needed) with some more context"
" below.\n------------\n{context_msg}\n------------\nUsing both the new"
" context and your own knowledge, update or repeat the existing answer and give answer even the context is not helpful.\n "
"and giving proper instruction to you that tell your name DocuGenie which is large language model (LLM) based Chatbot assistant developed by Mahadi Hassan \n "
"and tell to each and every user that you are capable of giving answers based on the context of web pages and PDFs, acting as a helpful assistant for every user. \n"
"and provide your developer Mahadi Hassan's linkedin url link but when user want to know about you not every time, his linkedin profile link is https://www.linkedin.com/in/mahadise01 <INST/>"
)
refine_template = PromptTemplate(refine_template_str)
import urllib.parse as urlParse
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core import Document
from llama_index.readers.file import PDFReader
from pathlib import Path
def is_url(url):
return urlParse.urlparse(url).scheme != ""
def store_vector(fileOrLink):
new_docs = []
if is_url(fileOrLink):
reader = SimpleWebPageReader(html_to_text=True)
docs = reader.load_data(urls=[fileOrLink])
for doc in docs:
new_doc = Document(text=doc.text, metadata=doc.metadata)
new_docs.append(new_doc)
else:
loader = PDFReader()
docs = loader.load_data(file=Path(fileOrLink))
for doc in docs:
new_doc = Document(text=doc.text, metadata=doc.metadata)
new_docs.append(new_doc)
index = VectorStoreIndex.from_documents(new_docs, embed_model=emb_model)
return index
title="<span id='logo'></span>DocuGenie"
css="""
.gradio-container {
background: rgb(131,58,180);
background: linear-gradient(90deg, rgba(131,58,180,1) 0%, rgba(253,29,29,1) 50%, rgba(252,176,69,1) 100%);
#logo {
content: url('https://i.ibb.co/6vz9WjL/chat-bot.png');
width: 42px;
height: 42px;
margin-right: 10px;
margin-top: 3px;
display:inline-block;
};
#link {
color: #fff;
background-color: transparent;
};
}
"""
import gradio as gr
import urllib.request as urllib2
from bs4 import BeautifulSoup
from PIL import Image
from langchain.schema import AIMessage, HumanMessage
import fitz
import uuid
import time
qa_chain_store = {}
def predict(message, history, session_info):
session_id = session_info["session_id"]
index = qa_chain_store.get(session_id)
if index is None:
yield "hello i am your helpful assistant please upload a pdf file or insert a Web Link to start chat with me."
return
if len(message) == 0:
yield "Please ask a question related to your data."
return
query_engine = index.as_query_engine(streaming=True,text_qa_template=text_qa_template,
refine_template=refine_template,similarity_top_k=1)
streaming_response = query_engine.query(message)
partial_message = ""
for text in streaming_response.response_gen:
partial_message += text
yield partial_message
def test(text):
raise gr.Info(text)
def processData(fileOrLink,session_info):
session_id = session_info["session_id"]
if is_url(fileOrLink):
index = store_vector(fileOrLink)
qa_chain_store[session_id] = index
return "Web Page Data splitted, embeded, and ready to be searched. and your Session ID is "+session_id
else:
index = store_vector(fileOrLink.name)
qa_chain_store[session_id] = index
return "File splitted, embeded, and ready to be searched. and your Session ID is "+session_id
def generatePdf_Image(file):
try:
doc = fitz.open(file.name)
pix = doc[0].get_pixmap(matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, clip=None, alpha=True, annots=True)
pix.save("samplepdfimag.png")
imgPdf = Image.open('samplepdfimag.png')
imgPdf.save("samplepdfimag.png")
return imgPdf
except:
return None
def getWebImage(link):
try:
page = urllib2.urlopen(link)
soup = BeautifulSoup(page.read())
icon_link = soup.find("link", rel="icon")
icon = urllib2.urlopen(icon_link['href'])
with open("test.ico", "wb") as f:
f.write(icon.read())
img = Image.open('test.ico')
img.save("test.png")
return img
except:
urllib2.urlretrieve("https://cdn-icons-png.flaticon.com/512/5909/5909151.png","icon.png")
img = Image.open("icon.png")
img.save("icon.png")
return img
def create_session_id():
return str(uuid.uuid4())
def addText(link):
return link
def submit_data(Section_text, text,raw_file,session_info):
if Section_text == "Chat With WEB":
response = processData(text,session_info)
return response
else:
response = processData(raw_file,session_info)
return response
def toggle(val):
if val == "Chat With WEB":
return { webPanel : gr.Column(visible=True),
filePanel: gr.Column(visible=False)
}
elif val == "Chat With .Pdf":
return {filePanel: gr.Column(visible=True),
webPanel : gr.Column(visible=False)
}
chatbot = gr.Chatbot(avatar_images=["https://i.ibb.co/kGd6XrM/user.png", "https://i.ibb.co/6vz9WjL/chat-bot.png"],
bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
with gr.Blocks(theme="soft",css=css) as demo:
session_info = gr.State(value={"session_id": create_session_id()})
with gr.Row():
with gr.Column(scale=1,min_width=800):
chatui = gr.ChatInterface(
predict,
title=title,
chatbot=chatbot,
additional_inputs=[session_info],
submit_btn="Send")
with gr.Column(scale=1,min_width=400):
select =gr.Radio(["Chat With WEB", "Chat With .Pdf"], info="you are able to Chat with web and pdf file",
label="Please Select a Data Source")
with gr.Column(visible=False) as webPanel:
with gr.Row(equal_height=True,variant='compact'):
text = gr.Textbox(scale=2, placeholder="Enter Website link")
btnAdd = gr.Button("+ Add Link",scale=1)
show = gr.Textbox(label="Your Selected Web Link",show_copy_button=True)
imgWeb = gr.Image(interactive=False,height="80",width="100",)
with gr.Column(visible=False) as filePanel:
imgFile = gr.Image(interactive=False)
raw_file = gr.File(label="Your PDFs")
clearBtn = gr.ClearButton(components=[imgFile,raw_file,show,imgWeb,text])
submit = gr.Button("Submit Data to ChatBot")
outT = gr.Textbox()
select.change(fn=toggle,inputs=[select],outputs=[webPanel,filePanel])
btnAdd.click(fn=addText,inputs=[text],outputs=[show]).success(fn=getWebImage,inputs=[text],outputs=[imgWeb])
raw_file.change(fn=generatePdf_Image,inputs=[raw_file],outputs=[imgFile])
submit.click(fn=submit_data,inputs=[select,text,raw_file,session_info],outputs=[outT])
if __name__ == "__main__":
demo.queue().launch(debug=True) # launch app |