Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	initial commit
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,316 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Any, Callable, Dict
         | 
| 2 | 
            +
            from llama_index.llms.huggingface import HuggingFaceInferenceAPI
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from huggingface_hub import AsyncInferenceClient, InferenceClient
         | 
| 5 | 
            +
            from llama_index.core.base.llms.types import (
         | 
| 6 | 
            +
                CompletionResponseGen,
         | 
| 7 | 
            +
                CompletionResponse
         | 
| 8 | 
            +
            )
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            class CustomLLMInferenceWrapper(HuggingFaceInferenceAPI):
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                kwa = dict(
         | 
| 14 | 
            +
                    temperature=0.2,
         | 
| 15 | 
            +
                    max_new_tokens=512,
         | 
| 16 | 
            +
                    top_p=0.95,
         | 
| 17 | 
            +
                    repetition_penalty=0.93,
         | 
| 18 | 
            +
                    do_sample=True,
         | 
| 19 | 
            +
                    seed=42,
         | 
| 20 | 
            +
                )
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def __init__(self, **kwargs: Any):
         | 
| 23 | 
            +
                       super().__init__(**kwargs)
         | 
| 24 | 
            +
                       model_name=kwargs.get("model_name")
         | 
| 25 | 
            +
                       self._sync_client = InferenceClient(model=model_name)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
                def stream_complete(
         | 
| 29 | 
            +
                    self, prompt: str, formatted: bool = False, **kwargs: Any
         | 
| 30 | 
            +
              ) -> CompletionResponseGen:
         | 
| 31 | 
            +
                    """Streaming completion endpoint."""
         | 
| 32 | 
            +
                    def gen() -> CompletionResponseGen:
         | 
| 33 | 
            +
                        for response in self._sync_client.text_generation(prompt,**self.kwa, stream=True, details=True, return_full_text=False):
         | 
| 34 | 
            +
                            yield CompletionResponse(text=response.token.text,delta=response.token.text)
         | 
| 35 | 
            +
                    return gen()
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def complete(
         | 
| 38 | 
            +
                    self, prompt: str, formatted: bool = False, **kwargs: Any
         | 
| 39 | 
            +
                ) -> CompletionResponse:
         | 
| 40 | 
            +
                    return CompletionResponse(
         | 
| 41 | 
            +
                        text=self._sync_client.text_generation(
         | 
| 42 | 
            +
                            prompt, **{**{"max_new_tokens": self.num_output}, **kwargs}
         | 
| 43 | 
            +
                        )
         | 
| 44 | 
            +
                    )
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            import os
         | 
| 47 | 
            +
            from typing import List, Optional
         | 
| 48 | 
            +
            from llama_index.llms.huggingface import HuggingFaceInferenceAPI
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            llm = CustomLLMInferenceWrapper(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            from langchain.storage import LocalFileStore
         | 
| 54 | 
            +
            from langchain.embeddings import CacheBackedEmbeddings
         | 
| 55 | 
            +
            from langchain.embeddings.huggingface import HuggingFaceEmbeddings
         | 
| 56 | 
            +
            from llama_index.core import VectorStoreIndex
         | 
| 57 | 
            +
            from llama_index.embeddings.langchain import LangchainEmbedding
         | 
| 58 | 
            +
            from torch import cuda
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            store = LocalFileStore("./CacheBackedEmbeddings/")
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
         | 
| 64 | 
            +
            device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            embed_model = HuggingFaceEmbeddings(
         | 
| 67 | 
            +
                model_name=embed_model_id,
         | 
| 68 | 
            +
                model_kwargs={'device': device},
         | 
| 69 | 
            +
                encode_kwargs={'device': device, 'batch_size': 32}
         | 
| 70 | 
            +
            )
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            cached_embedder = CacheBackedEmbeddings.from_bytes_store(
         | 
| 73 | 
            +
                 embed_model, store, namespace="sentence-transformers/all-MiniLM-L6-v2")
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            emb_model = LangchainEmbedding(cached_embedder)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            from llama_index.core import Settings
         | 
| 78 | 
            +
            from llama_index.core.node_parser import SentenceSplitter
         | 
| 79 | 
            +
            from llama_index.core import ServiceContext, set_global_service_context
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            service_context = ServiceContext.from_defaults(
         | 
| 82 | 
            +
                llm_predictor=llm,
         | 
| 83 | 
            +
                embed_model=emb_model,
         | 
| 84 | 
            +
                node_parser=SentenceSplitter(chunk_size=512, chunk_overlap=20),
         | 
| 85 | 
            +
                num_output=512,
         | 
| 86 | 
            +
                context_window=3900,
         | 
| 87 | 
            +
            )
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            Settings.embed_model = emb_model
         | 
| 90 | 
            +
            Settings.llm=llm
         | 
| 91 | 
            +
            Settings.node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
         | 
| 92 | 
            +
            Settings.num_output = 512
         | 
| 93 | 
            +
            Settings.context_window = 3900
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            from llama_index.core import PromptTemplate
         | 
| 96 | 
            +
            from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            text_qa_template_str = (
         | 
| 99 | 
            +
                "<INST> Context information is"
         | 
| 100 | 
            +
                " below.\n---------------------\n{context_str}\n---------------------\nUsing"
         | 
| 101 | 
            +
                " both the context information and also using your own knowledge, answer"
         | 
| 102 | 
            +
                " the question: {query_str}\nIf the context isn't helpful, you can also"
         | 
| 103 | 
            +
                " answer the question on your own.\n "
         | 
| 104 | 
            +
                " and giving proper instruction to you that tell your name DocuGenie which is large language model (LLM) based Chatbot assistant developed by Mahadi Hassan \n "
         | 
| 105 | 
            +
                " and tell to each and every user that you are capable of giving answers based on the context of web pages and PDFs, acting as a helpful assistant for every user. \n"
         | 
| 106 | 
            +
                " and provide your developer Mahadi Hassan's linkedin url link but when user want to know about you not every time, his linkedin profile link is https://www.linkedin.com/in/mahadise01 <INST/>"
         | 
| 107 | 
            +
            )
         | 
| 108 | 
            +
            text_qa_template = PromptTemplate(text_qa_template_str)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            refine_template_str = (
         | 
| 111 | 
            +
                "<INST> The original question is as follows: {query_str}\nWe have provided an"
         | 
| 112 | 
            +
                " existing answer: {existing_answer}\nWe have the opportunity to refine"
         | 
| 113 | 
            +
                " the existing answer (only if needed) with some more context"
         | 
| 114 | 
            +
                " below.\n------------\n{context_msg}\n------------\nUsing both the new"
         | 
| 115 | 
            +
                " context and your own knowledge, update or repeat the existing answer and give answer even the context is not helpful.\n "
         | 
| 116 | 
            +
                "and giving proper instruction to you that tell your name DocuGenie which is large language model (LLM) based Chatbot assistant developed by Mahadi Hassan \n "
         | 
| 117 | 
            +
                "and tell to each and every user that you are capable of giving answers based on the context of web pages and PDFs, acting as a helpful assistant for every user. \n"
         | 
| 118 | 
            +
                "and provide your developer Mahadi Hassan's linkedin url link but when user want to know about you not every time, his linkedin profile link is https://www.linkedin.com/in/mahadise01 <INST/>"
         | 
| 119 | 
            +
            )
         | 
| 120 | 
            +
            refine_template = PromptTemplate(refine_template_str)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            import urllib.parse as urlParse
         | 
| 123 | 
            +
            from llama_index.readers.web import SimpleWebPageReader
         | 
| 124 | 
            +
            from llama_index.core import StorageContext, load_index_from_storage
         | 
| 125 | 
            +
            from llama_index.core import Document
         | 
| 126 | 
            +
            from llama_index.readers.file import PDFReader
         | 
| 127 | 
            +
            from pathlib import Path
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            def is_url(url):
         | 
| 130 | 
            +
                return urlParse.urlparse(url).scheme != ""
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            def store_vector(fileOrLink):
         | 
| 133 | 
            +
                new_docs = []
         | 
| 134 | 
            +
                if is_url(fileOrLink):
         | 
| 135 | 
            +
                    reader = SimpleWebPageReader(html_to_text=True)
         | 
| 136 | 
            +
                    docs = reader.load_data(urls=[fileOrLink])
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    for doc in docs:
         | 
| 139 | 
            +
                        new_doc = Document(text=doc.text, metadata=doc.metadata)
         | 
| 140 | 
            +
                        new_docs.append(new_doc)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                else:
         | 
| 143 | 
            +
                    loader = PDFReader()
         | 
| 144 | 
            +
                    docs = loader.load_data(file=Path(fileOrLink))
         | 
| 145 | 
            +
                    for doc in docs:
         | 
| 146 | 
            +
                        new_doc = Document(text=doc.text, metadata=doc.metadata)
         | 
| 147 | 
            +
                        new_docs.append(new_doc)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                index = VectorStoreIndex.from_documents(new_docs, embed_model=emb_model)
         | 
| 150 | 
            +
                return index
         | 
| 151 | 
            +
             | 
| 152 | 
            +
            title="<span id='logo'></span>DocuGenie"
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            css="""
         | 
| 155 | 
            +
                      .gradio-container {
         | 
| 156 | 
            +
                          background: rgb(131,58,180);
         | 
| 157 | 
            +
                          background: linear-gradient(90deg, rgba(131,58,180,1) 0%, rgba(253,29,29,1) 50%, rgba(252,176,69,1) 100%);
         | 
| 158 | 
            +
                          #logo {
         | 
| 159 | 
            +
                          content: url('https://i.ibb.co/6vz9WjL/chat-bot.png');
         | 
| 160 | 
            +
                          width: 42px;
         | 
| 161 | 
            +
                          height: 42px;
         | 
| 162 | 
            +
                          margin-right: 10px;
         | 
| 163 | 
            +
                          margin-top: 3px;
         | 
| 164 | 
            +
                          display:inline-block;
         | 
| 165 | 
            +
                        };
         | 
| 166 | 
            +
                        #link {
         | 
| 167 | 
            +
                        color: #fff;
         | 
| 168 | 
            +
                        background-color: transparent;
         | 
| 169 | 
            +
                        };
         | 
| 170 | 
            +
                      }
         | 
| 171 | 
            +
                      """
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            import gradio as gr
         | 
| 174 | 
            +
            import urllib.request as urllib2
         | 
| 175 | 
            +
            from bs4 import BeautifulSoup
         | 
| 176 | 
            +
            from PIL import Image
         | 
| 177 | 
            +
            from langchain.schema import AIMessage, HumanMessage
         | 
| 178 | 
            +
            import fitz
         | 
| 179 | 
            +
            import uuid
         | 
| 180 | 
            +
            import time
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            qa_chain_store = {}
         | 
| 183 | 
            +
             | 
| 184 | 
            +
             | 
| 185 | 
            +
            def predict(message, history, session_info):
         | 
| 186 | 
            +
                     session_id = session_info["session_id"]
         | 
| 187 | 
            +
                     index = qa_chain_store.get(session_id)
         | 
| 188 | 
            +
                     if index is None:
         | 
| 189 | 
            +
                        yield "hello i am your helpful assistant please upload a pdf file or insert a Web Link to start chat with me."
         | 
| 190 | 
            +
                        return
         | 
| 191 | 
            +
                     if len(message) == 0:
         | 
| 192 | 
            +
                        yield "Please ask a question related to your data."
         | 
| 193 | 
            +
                        return
         | 
| 194 | 
            +
                     query_engine = index.as_query_engine(streaming=True,text_qa_template=text_qa_template,
         | 
| 195 | 
            +
                     refine_template=refine_template,similarity_top_k=1)
         | 
| 196 | 
            +
                     streaming_response = query_engine.query(message)
         | 
| 197 | 
            +
                     partial_message = ""
         | 
| 198 | 
            +
                     for text in streaming_response.response_gen:
         | 
| 199 | 
            +
                          partial_message += text
         | 
| 200 | 
            +
                          yield partial_message
         | 
| 201 | 
            +
             | 
| 202 | 
            +
             | 
| 203 | 
            +
            def test(text):
         | 
| 204 | 
            +
              raise gr.Info(text)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
             | 
| 207 | 
            +
            def processData(fileOrLink,session_info):
         | 
| 208 | 
            +
                session_id = session_info["session_id"]
         | 
| 209 | 
            +
                if  is_url(fileOrLink):
         | 
| 210 | 
            +
                    index = store_vector(fileOrLink)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    qa_chain_store[session_id] = index
         | 
| 213 | 
            +
                    return  "Web Page Data splitted, embeded, and ready to be searched. and your Session ID is "+session_id
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                else:
         | 
| 216 | 
            +
                     index = store_vector(fileOrLink.name)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                     qa_chain_store[session_id] = index
         | 
| 219 | 
            +
                     return  "File splitted, embeded, and ready to be searched. and your Session ID is "+session_id
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            def generatePdf_Image(file):
         | 
| 224 | 
            +
               try:
         | 
| 225 | 
            +
                  doc = fitz.open(file.name)
         | 
| 226 | 
            +
                  pix = doc[0].get_pixmap(matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, clip=None, alpha=True, annots=True)
         | 
| 227 | 
            +
                  pix.save("samplepdfimag.png")
         | 
| 228 | 
            +
                  imgPdf = Image.open('samplepdfimag.png')
         | 
| 229 | 
            +
                  imgPdf.save("samplepdfimag.png")
         | 
| 230 | 
            +
                  return imgPdf
         | 
| 231 | 
            +
               except:
         | 
| 232 | 
            +
                return None
         | 
| 233 | 
            +
             | 
| 234 | 
            +
             | 
| 235 | 
            +
             | 
| 236 | 
            +
            def getWebImage(link):
         | 
| 237 | 
            +
              try:
         | 
| 238 | 
            +
                page = urllib2.urlopen(link)
         | 
| 239 | 
            +
                soup = BeautifulSoup(page.read())
         | 
| 240 | 
            +
                icon_link = soup.find("link", rel="icon")
         | 
| 241 | 
            +
                icon = urllib2.urlopen(icon_link['href'])
         | 
| 242 | 
            +
                with open("test.ico", "wb") as f:
         | 
| 243 | 
            +
                      f.write(icon.read())
         | 
| 244 | 
            +
                      img = Image.open('test.ico')
         | 
| 245 | 
            +
                      img.save("test.png")
         | 
| 246 | 
            +
                      return img
         | 
| 247 | 
            +
              except:
         | 
| 248 | 
            +
                    urllib2.urlretrieve("https://cdn-icons-png.flaticon.com/512/5909/5909151.png","icon.png")
         | 
| 249 | 
            +
                    img = Image.open("icon.png")
         | 
| 250 | 
            +
                    img.save("icon.png")
         | 
| 251 | 
            +
                    return img
         | 
| 252 | 
            +
             | 
| 253 | 
            +
             | 
| 254 | 
            +
            def create_session_id():
         | 
| 255 | 
            +
                return str(uuid.uuid4())
         | 
| 256 | 
            +
             | 
| 257 | 
            +
            def addText(link):
         | 
| 258 | 
            +
                return link
         | 
| 259 | 
            +
             | 
| 260 | 
            +
            def submit_data(Section_text, text,raw_file,session_info):
         | 
| 261 | 
            +
                if Section_text == "Chat With WEB":
         | 
| 262 | 
            +
                   response = processData(text,session_info)
         | 
| 263 | 
            +
                   return response
         | 
| 264 | 
            +
                else:
         | 
| 265 | 
            +
                   response = processData(raw_file,session_info)
         | 
| 266 | 
            +
                   return response
         | 
| 267 | 
            +
             | 
| 268 | 
            +
             | 
| 269 | 
            +
            def toggle(val):
         | 
| 270 | 
            +
                if val == "Chat With WEB":
         | 
| 271 | 
            +
                    return { webPanel : gr.Column(visible=True),
         | 
| 272 | 
            +
                            filePanel:  gr.Column(visible=False)
         | 
| 273 | 
            +
                }
         | 
| 274 | 
            +
                elif val == "Chat With .Pdf":
         | 
| 275 | 
            +
                    return {filePanel: gr.Column(visible=True),
         | 
| 276 | 
            +
                             webPanel : gr.Column(visible=False)
         | 
| 277 | 
            +
                    }
         | 
| 278 | 
            +
             | 
| 279 | 
            +
            chatbot = gr.Chatbot(avatar_images=["https://i.ibb.co/kGd6XrM/user.png", "https://i.ibb.co/6vz9WjL/chat-bot.png"],
         | 
| 280 | 
            +
                                 bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
            with gr.Blocks(theme="soft",css=css) as demo:
         | 
| 283 | 
            +
                 session_info = gr.State(value={"session_id": create_session_id()})
         | 
| 284 | 
            +
                 with gr.Row():
         | 
| 285 | 
            +
                        with gr.Column(scale=1,min_width=800):
         | 
| 286 | 
            +
                           chatui = gr.ChatInterface(
         | 
| 287 | 
            +
                            predict,
         | 
| 288 | 
            +
                            title=title,
         | 
| 289 | 
            +
                            chatbot=chatbot,
         | 
| 290 | 
            +
                            additional_inputs=[session_info],
         | 
| 291 | 
            +
                            submit_btn="Send")
         | 
| 292 | 
            +
                        with gr.Column(scale=1,min_width=400):
         | 
| 293 | 
            +
                                  select =gr.Radio(["Chat With WEB", "Chat With .Pdf"], info="you are able to Chat with web and pdf file",
         | 
| 294 | 
            +
                                                        label="Please Select a Data Source")
         | 
| 295 | 
            +
                                  with gr.Column(visible=False) as webPanel:
         | 
| 296 | 
            +
                                        with gr.Row(equal_height=True,variant='compact'):
         | 
| 297 | 
            +
                                              text = gr.Textbox(scale=2, placeholder="Enter Website link")
         | 
| 298 | 
            +
                                              btnAdd = gr.Button("+ Add Link",scale=1)
         | 
| 299 | 
            +
                                        show = gr.Textbox(label="Your Selected Web Link",show_copy_button=True)
         | 
| 300 | 
            +
                                        imgWeb = gr.Image(interactive=False,height="80",width="100",)
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                                  with gr.Column(visible=False) as filePanel:
         | 
| 303 | 
            +
                                       imgFile = gr.Image(interactive=False)
         | 
| 304 | 
            +
                                       raw_file = gr.File(label="Your PDFs")
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                                  clearBtn = gr.ClearButton(components=[imgFile,raw_file,show,imgWeb,text])
         | 
| 307 | 
            +
                                  submit = gr.Button("Submit Data to ChatBot")
         | 
| 308 | 
            +
                                  outT = gr.Textbox()
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                                  select.change(fn=toggle,inputs=[select],outputs=[webPanel,filePanel])
         | 
| 311 | 
            +
                                  btnAdd.click(fn=addText,inputs=[text],outputs=[show]).success(fn=getWebImage,inputs=[text],outputs=[imgWeb])
         | 
| 312 | 
            +
                                  raw_file.change(fn=generatePdf_Image,inputs=[raw_file],outputs=[imgFile])
         | 
| 313 | 
            +
                                  submit.click(fn=submit_data,inputs=[select,text,raw_file,session_info],outputs=[outT])
         | 
| 314 | 
            +
             | 
| 315 | 
            +
            if __name__ == "__main__":
         | 
| 316 | 
            +
                demo.queue().launch(debug=True) # launch app
         | 
