Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("meta-llama/Meta-Llama-3-8B",token=os.getenv('HF_API_TOKEN')) | |
# ## None type | |
# def respond( | |
# message: str, | |
# history: list[tuple[str, str]], # This will not be used | |
# system_message: str, | |
# max_tokens: int, | |
# temperature: float, | |
# top_p: float, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# # Append only the latest user message | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# try: | |
# # Generate response from the model | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# if message.choices[0].delta.content is not None: | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# except Exception as e: | |
# yield f"An error occurred: {e}" | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
####19 | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], # This will not be used | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
# Combine the system message and user input into a single prompt | |
prompt = f"{system_message}\n{message}" | |
response = "" | |
try: | |
# Generate response from the model using text generation method | |
for message in client.text_generation( | |
prompt=prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
if message.token is not None: | |
response += message.token | |
yield response | |
except Exception as e: | |
yield f"An error occurred: {e}" | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
# import os | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# # Initialize the Hugging Face Inference Client | |
# client = InferenceClient( | |
# "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
# token= os.getenv("HF_API_TOKEN"),# Replace with your actual token | |
# ) | |
# # Define a function to handle the chat input and get a response from the model | |
# def chat_with_model(user_input): | |
# # Call the client to get the model's response | |
# response = "" | |
# for message in client.chat_completion( | |
# messages=[{"role": "user", "content": user_input}], | |
# max_tokens=500, | |
# stream=True, | |
# ): | |
# response += message.choices[0].delta.content | |
# return response | |
# # Create a Gradio interface with a chat component | |
# with gr.Blocks() as demo: | |
# chatbot = gr.Chatbot() | |
# with gr.Row(): | |
# txt = gr.Textbox(show_label=False, placeholder="Type your message here...") | |
# txt.submit(chat_with_model, inputs=txt, outputs=chatbot) | |
# demo.launch() | |