import os import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("meta-llama/Meta-Llama-3-8B",token=os.getenv('HF_API_TOKEN')) # ## None type # def respond( # message: str, # history: list[tuple[str, str]], # This will not be used # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # messages = [{"role": "system", "content": system_message}] # # Append only the latest user message # messages.append({"role": "user", "content": message}) # response = "" # try: # # Generate response from the model # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # if message.choices[0].delta.content is not None: # token = message.choices[0].delta.content # response += token # yield response # except Exception as e: # yield f"An error occurred: {e}" # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() ####19 def respond( message: str, history: list[tuple[str, str]], # This will not be used system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Combine the system message and user input into a single prompt prompt = f"{system_message}\n{message}" response = "" try: # Generate response from the model using text generation method for message in client.text_generation( prompt=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ): if message.token is not None: response += message.token yield response except Exception as e: yield f"An error occurred: {e}" # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() # import os # import gradio as gr # from huggingface_hub import InferenceClient # # Initialize the Hugging Face Inference Client # client = InferenceClient( # "meta-llama/Meta-Llama-3.1-8B-Instruct", # token= os.getenv("HF_API_TOKEN"),# Replace with your actual token # ) # # Define a function to handle the chat input and get a response from the model # def chat_with_model(user_input): # # Call the client to get the model's response # response = "" # for message in client.chat_completion( # messages=[{"role": "user", "content": user_input}], # max_tokens=500, # stream=True, # ): # response += message.choices[0].delta.content # return response # # Create a Gradio interface with a chat component # with gr.Blocks() as demo: # chatbot = gr.Chatbot() # with gr.Row(): # txt = gr.Textbox(show_label=False, placeholder="Type your message here...") # txt.submit(chat_with_model, inputs=txt, outputs=chatbot) # demo.launch()