Project-W / app.py
MadsGalsgaard's picture
Update app.py
7daf88a verified
raw
history blame
21.7 kB
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# ## None type
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# messages = [{"role": "system", "content": system_message}]
# # Append only the latest user message
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if message.choices[0].delta.content is not None:
# token = message.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# ],
# )
# if __name__ == "__main__":
# demo.launch()
##Running smothly CHATBOT
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# # Build the messages list
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for msg in client.chat_completion(
# messages=messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if msg.choices[0].delta.content is not None:
# token = msg.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
### 26 aug Use a pipeline as a high-level Logic
# import spaces
# import os
# import subprocess
# from llama_cpp import Llama
# from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
# from llama_cpp_agent.providers import LlamaCppPythonProvider
# from llama_cpp_agent.chat_history import BasicChatHistory
# from llama_cpp_agent.chat_history.messages import Roles
# import gradio as gr
# from huggingface_hub import hf_hub_download
# huggingface_token = os.getenv("HF_TOKEN")
# # Download the Meta-Llama-3.1-8B-Instruct model
# hf_hub_download(
# repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
# filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
# local_dir="./models",
# token=huggingface_token
# )
# llm = None
# llm_model = None
# @spaces.GPU(duration=120)
# def respond(
# message,
# history: list[tuple[str, str]],
# model,
# system_message,
# max_tokens,
# temperature,
# top_p,
# top_k,
# repeat_penalty,
# ):
# chat_template = MessagesFormatterType.GEMMA_2
# global llm
# global llm_model
# # Load model only if it's not already loaded or if a new model is selected
# if llm is None or llm_model != model:
# try:
# llm = Llama(
# model_path=f"models/{model}",
# flash_attn=True,
# n_gpu_layers=81, # Adjust based on available GPU resources
# n_batch=1024,
# n_ctx=8192,
# )
# llm_model = model
# except Exception as e:
# return f"Error loading model: {str(e)}"
# provider = LlamaCppPythonProvider(llm)
# agent = LlamaCppAgent(
# provider,
# system_prompt=f"{system_message}",
# predefined_messages_formatter_type=chat_template,
# debug_output=True
# )
# settings = provider.get_provider_default_settings()
# settings.temperature = temperature
# settings.top_k = top_k
# settings.top_p = top_p
# settings.max_tokens = max_tokens
# settings.repeat_penalty = repeat_penalty
# settings.stream = True
# messages = BasicChatHistory()
# # Add user and assistant messages to the history
# for msn in history:
# user = {'role': Roles.user, 'content': msn[0]}
# assistant = {'role': Roles.assistant, 'content': msn[1]}
# messages.add_message(user)
# messages.add_message(assistant)
# # Stream the response
# try:
# stream = agent.get_chat_response(
# message,
# llm_sampling_settings=settings,
# chat_history=messages,
# returns_streaming_generator=True,
# print_output=False
# )
# outputs = ""
# for output in stream:
# outputs += output
# yield outputs
# except Exception as e:
# yield f"Error during response generation: {str(e)}"
# description = """<p align="center">Using the Meta-Llama-3.1-8B-Instruct Model</p>"""
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Dropdown([
# 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf'
# ],
# value="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
# label="Model"
# ),
# gr.Textbox(value="You are a helpful assistant.", label="System message"),
# gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p",
# ),
# gr.Slider(
# minimum=0,
# maximum=100,
# value=40,
# step=1,
# label="Top-k",
# ),
# gr.Slider(
# minimum=0.0,
# maximum=2.0,
# value=1.1,
# step=0.1,
# label="Repetition penalty",
# ),
# ],
# retry_btn="Retry",
# undo_btn="Undo",
# clear_btn="Clear",
# submit_btn="Send",
# title="Chat with Meta-Llama-3.1-8B-Instruct using llama.cpp",
# description=description,
# chatbot=gr.Chatbot(
# scale=1,
# likeable=False,
# show_copy_button=True
# )
# )
# if __name__ == "__main__":
# demo.launch()
####03 3.1 8b
# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
# import gradio as gr
# from threading import Thread
# MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
# HF_TOKEN = os.environ.get("HF_API_TOKEN",None)
# print(HF_TOKEN,"######$$$$$$$$$$$$$$$")
# MODEL = os.environ.get("MODEL_ID","meta-llama/Meta-Llama-3.1-8B-Instruct")
# TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"
# PLACEHOLDER = """
# <center>
# <p>Hi! How can I help you today?</p>
# </center>
# """
# CSS = """
# .duplicate-button {
# margin: auto !important;
# color: white !important;
# background: black !important;
# border-radius: 100vh !important;
# }
# h3 {
# text-align: center;
# }
# """
# device = "cuda" # for GPU usage or "cpu" for CPU usage
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type= "nf4")
# tokenizer = AutoTokenizer.from_pretrained(MODEL)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL,
# torch_dtype=torch.bfloat16,
# device_map="auto",
# quantization_config=quantization_config)
# @spaces.GPU()
# def stream_chat(
# message: str,
# history: list,
# system_prompt: str,
# temperature: float = 0.8,
# max_new_tokens: int = 1024,
# top_p: float = 1.0,
# top_k: int = 20,
# penalty: float = 1.2,
# ):
# print(f'message: {message}')
# print(f'history: {history}')
# conversation = [
# {"role": "system", "content": system_prompt}
# ]
# for prompt, answer in history:
# conversation.extend([
# {"role": "user", "content": prompt},
# {"role": "assistant", "content": answer},
# ])
# conversation.append({"role": "user", "content": message})
# input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# input_ids=input_ids,
# max_new_tokens = max_new_tokens,
# do_sample = False if temperature == 0 else True,
# top_p = top_p,
# top_k = top_k,
# temperature = temperature,
# repetition_penalty=penalty,
# eos_token_id=[128001,128008,128009],
# streamer=streamer,
# )
# with torch.no_grad():
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# yield buffer
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
# with gr.Blocks(css=CSS, theme="soft") as demo:
# gr.HTML(TITLE)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
# gr.ChatInterface(
# fn=stream_chat,
# chatbot=chatbot,
# fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Textbox(
# value="You are a helpful assistant",
# label="System Prompt",
# render=False,
# ),
# gr.Slider(
# minimum=0,
# maximum=1,
# step=0.1,
# value=0.8,
# label="Temperature",
# render=False,
# ),
# gr.Slider(
# minimum=128,
# maximum=8192,
# step=1,
# value=1024,
# label="Max new tokens",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=1.0,
# label="top_p",
# render=False,
# ),
# gr.Slider(
# minimum=1,
# maximum=20,
# step=1,
# value=20,
# label="top_k",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=2.0,
# step=0.1,
# value=1.2,
# label="Repetition penalty",
# render=False,
# ),
# ],
# examples=[
# ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
# ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
# ["Tell me a random fun fact about the Roman Empire."],
# ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
# ],
# cache_examples=False,
# )
# if __name__ == "__main__":
# demo.launch()
###########new clientkey
# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# import gradio as gr
# from threading import Thread
# MODEL = "THUDM/LongWriter-llama3.1-8b"
# TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"
# PLACEHOLDER = """
# <center>
# <p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
# </center>
# """
# CSS = """
# .duplicate-button {
# margin: auto !important;
# color: white !important;
# background: black !important;
# border-radius: 100vh !important;
# }
# h3 {
# text-align: center;
# }
# """
# device = "cuda" if torch.cuda.is_available() else "cpu"
# tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
# model = model.eval()
# @spaces.GPU()
# def stream_chat(
# message: str,
# history: list,
# system_prompt: str,
# temperature: float = 0.5,
# max_new_tokens: int = 32768,
# top_p: float = 1.0,
# top_k: int = 50,
# ):
# print(f'message: {message}')
# print(f'history: {history}')
# full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
# for prompt, answer in history:
# full_prompt += f"[INST]{prompt}[/INST]{answer}"
# full_prompt += f"[INST]{message}[/INST]"
# inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device)
# context_length = inputs.input_ids.shape[-1]
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# inputs=inputs.input_ids,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_p=top_p,
# top_k=top_k,
# temperature=temperature,
# num_beams=1,
# streamer=streamer,
# )
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# yield buffer
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
# with gr.Blocks(css=CSS, theme="soft") as demo:
# gr.HTML(TITLE)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
# gr.ChatInterface(
# fn=stream_chat,
# chatbot=chatbot,
# fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Textbox(
# value="You are a helpful assistant capable of generating long-form content.",
# label="System Prompt",
# render=False,
# ),
# gr.Slider(
# minimum=0,
# maximum=1,
# step=0.1,
# value=0.5,
# label="Temperature",
# render=False,
# ),
# gr.Slider(
# minimum=1024,
# maximum=32768,
# step=1024,
# value=32768,
# label="Max new tokens",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=1.0,
# label="Top p",
# render=False,
# ),
# gr.Slider(
# minimum=1,
# maximum=100,
# step=1,
# value=50,
# label="Top k",
# render=False,
# ),
# ],
# examples=[
# ["Write a 5000-word comprehensive guide on machine learning for beginners."],
# ["Create a detailed 3000-word business plan for a sustainable energy startup."],
# ["Compose a 2000-word short story set in a futuristic underwater city."],
# ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."],
# ],
# cache_examples=False,
# )
# if __name__ == "__main__":
# demo.launch()
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
# Model and constants
MODEL = "THUDM/LongWriter-llama3.1-8b"
TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"
PLACEHOLDER = """
<center>
<p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# Check device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto").eval()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.5,
max_new_tokens: int = 4096, # Lowered max tokens for efficiency
top_p: float = 1.0,
top_k: int = 50,
):
try:
full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
for prompt, answer in history:
full_prompt += f"[INST]{prompt}[/INST]{answer}"
full_prompt += f"[INST]{message}[/INST]"
# Tokenize input
inputs = tokenizer(full_prompt, truncation=True, max_length=2048, return_tensors="pt").to(device)
context_length = inputs.input_ids.shape[-1]
# Setup TextIteratorStreamer for streaming response
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
# Generation parameters
generate_kwargs = dict(
inputs=inputs.input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
streamer=streamer,
)
# Generate text in a separate thread to avoid blocking
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
# Stream response
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
except Exception as e:
yield f"An error occurred: {str(e)}"
# Gradio setup
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant capable of generating long-form content.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=4096, # Reduced to a more manageable value
step=1024,
value=4096,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="Top p",
render=False,
),
gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Top k",
render=False,
),
],
# examples=[
# ["Write a 5000-word comprehensive guide on machine learning for beginners."],
# ["Create a detailed 3000-word business plan for a sustainable energy startup."],
# ["Compose a 2000-word short story set in a futuristic underwater city."],
# ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."],
# ],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()