# import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") # ## None type # def respond( # message: str, # history: list[tuple[str, str]], # This will not be used # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # messages = [{"role": "system", "content": system_message}] # # Append only the latest user message # messages.append({"role": "user", "content": message}) # response = "" # try: # # Generate response from the model # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # if message.choices[0].delta.content is not None: # token = message.choices[0].delta.content # response += token # yield response # except Exception as e: # yield f"An error occurred: {e}" # ], # ) # if __name__ == "__main__": # demo.launch() ##Running smothly CHATBOT # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") # def respond( # message: str, # history: list[tuple[str, str]], # This will not be used # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # # Build the messages list # messages = [{"role": "system", "content": system_message}] # messages.append({"role": "user", "content": message}) # response = "" # try: # # Generate response from the model # for msg in client.chat_completion( # messages=messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # if msg.choices[0].delta.content is not None: # token = msg.choices[0].delta.content # response += token # yield response # except Exception as e: # yield f"An error occurred: {e}" # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() ### 26 aug Use a pipeline as a high-level Logic # import spaces # import os # import subprocess # from llama_cpp import Llama # from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType # from llama_cpp_agent.providers import LlamaCppPythonProvider # from llama_cpp_agent.chat_history import BasicChatHistory # from llama_cpp_agent.chat_history.messages import Roles # import gradio as gr # from huggingface_hub import hf_hub_download # huggingface_token = os.getenv("HF_TOKEN") # # Download the Meta-Llama-3.1-8B-Instruct model # hf_hub_download( # repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF", # filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf", # local_dir="./models", # token=huggingface_token # ) # llm = None # llm_model = None # @spaces.GPU(duration=120) # def respond( # message, # history: list[tuple[str, str]], # model, # system_message, # max_tokens, # temperature, # top_p, # top_k, # repeat_penalty, # ): # chat_template = MessagesFormatterType.GEMMA_2 # global llm # global llm_model # # Load model only if it's not already loaded or if a new model is selected # if llm is None or llm_model != model: # try: # llm = Llama( # model_path=f"models/{model}", # flash_attn=True, # n_gpu_layers=81, # Adjust based on available GPU resources # n_batch=1024, # n_ctx=8192, # ) # llm_model = model # except Exception as e: # return f"Error loading model: {str(e)}" # provider = LlamaCppPythonProvider(llm) # agent = LlamaCppAgent( # provider, # system_prompt=f"{system_message}", # predefined_messages_formatter_type=chat_template, # debug_output=True # ) # settings = provider.get_provider_default_settings() # settings.temperature = temperature # settings.top_k = top_k # settings.top_p = top_p # settings.max_tokens = max_tokens # settings.repeat_penalty = repeat_penalty # settings.stream = True # messages = BasicChatHistory() # # Add user and assistant messages to the history # for msn in history: # user = {'role': Roles.user, 'content': msn[0]} # assistant = {'role': Roles.assistant, 'content': msn[1]} # messages.add_message(user) # messages.add_message(assistant) # # Stream the response # try: # stream = agent.get_chat_response( # message, # llm_sampling_settings=settings, # chat_history=messages, # returns_streaming_generator=True, # print_output=False # ) # outputs = "" # for output in stream: # outputs += output # yield outputs # except Exception as e: # yield f"Error during response generation: {str(e)}" # description = """

Using the Meta-Llama-3.1-8B-Instruct Model

""" # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Dropdown([ # 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf' # ], # value="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf", # label="Model" # ), # gr.Textbox(value="You are a helpful assistant.", label="System message"), # gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p", # ), # gr.Slider( # minimum=0, # maximum=100, # value=40, # step=1, # label="Top-k", # ), # gr.Slider( # minimum=0.0, # maximum=2.0, # value=1.1, # step=0.1, # label="Repetition penalty", # ), # ], # retry_btn="Retry", # undo_btn="Undo", # clear_btn="Clear", # submit_btn="Send", # title="Chat with Meta-Llama-3.1-8B-Instruct using llama.cpp", # description=description, # chatbot=gr.Chatbot( # scale=1, # likeable=False, # show_copy_button=True # ) # ) # if __name__ == "__main__": # demo.launch() ####03 3.1 8b # import os # import time # import spaces # import torch # from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig # import gradio as gr # from threading import Thread # MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"] # HF_TOKEN = os.environ.get("HF_API_TOKEN",None) # print(HF_TOKEN,"######$$$$$$$$$$$$$$$") # MODEL = os.environ.get("MODEL_ID","meta-llama/Meta-Llama-3.1-8B-Instruct") # TITLE = "

Meta-Llama3.1-8B

" # PLACEHOLDER = """ #
#

Hi! How can I help you today?

#
# """ # CSS = """ # .duplicate-button { # margin: auto !important; # color: white !important; # background: black !important; # border-radius: 100vh !important; # } # h3 { # text-align: center; # } # """ # device = "cuda" # for GPU usage or "cpu" for CPU usage # quantization_config = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_compute_dtype=torch.bfloat16, # bnb_4bit_use_double_quant=True, # bnb_4bit_quant_type= "nf4") # tokenizer = AutoTokenizer.from_pretrained(MODEL) # model = AutoModelForCausalLM.from_pretrained( # MODEL, # torch_dtype=torch.bfloat16, # device_map="auto", # quantization_config=quantization_config) # @spaces.GPU() # def stream_chat( # message: str, # history: list, # system_prompt: str, # temperature: float = 0.8, # max_new_tokens: int = 1024, # top_p: float = 1.0, # top_k: int = 20, # penalty: float = 1.2, # ): # print(f'message: {message}') # print(f'history: {history}') # conversation = [ # {"role": "system", "content": system_prompt} # ] # for prompt, answer in history: # conversation.extend([ # {"role": "user", "content": prompt}, # {"role": "assistant", "content": answer}, # ]) # conversation.append({"role": "user", "content": message}) # input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) # streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) # generate_kwargs = dict( # input_ids=input_ids, # max_new_tokens = max_new_tokens, # do_sample = False if temperature == 0 else True, # top_p = top_p, # top_k = top_k, # temperature = temperature, # repetition_penalty=penalty, # eos_token_id=[128001,128008,128009], # streamer=streamer, # ) # with torch.no_grad(): # thread = Thread(target=model.generate, kwargs=generate_kwargs) # thread.start() # buffer = "" # for new_text in streamer: # buffer += new_text # yield buffer # chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) # with gr.Blocks(css=CSS, theme="soft") as demo: # gr.HTML(TITLE) # gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") # gr.ChatInterface( # fn=stream_chat, # chatbot=chatbot, # fill_height=True, # additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), # additional_inputs=[ # gr.Textbox( # value="You are a helpful assistant", # label="System Prompt", # render=False, # ), # gr.Slider( # minimum=0, # maximum=1, # step=0.1, # value=0.8, # label="Temperature", # render=False, # ), # gr.Slider( # minimum=128, # maximum=8192, # step=1, # value=1024, # label="Max new tokens", # render=False, # ), # gr.Slider( # minimum=0.0, # maximum=1.0, # step=0.1, # value=1.0, # label="top_p", # render=False, # ), # gr.Slider( # minimum=1, # maximum=20, # step=1, # value=20, # label="top_k", # render=False, # ), # gr.Slider( # minimum=0.0, # maximum=2.0, # step=0.1, # value=1.2, # label="Repetition penalty", # render=False, # ), # ], # examples=[ # ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], # ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], # ["Tell me a random fun fact about the Roman Empire."], # ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], # ], # cache_examples=False, # ) # if __name__ == "__main__": # demo.launch() ###########new clientkey # import os # import time # import spaces # import torch # from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # import gradio as gr # from threading import Thread # MODEL = "THUDM/LongWriter-llama3.1-8b" # TITLE = "

AreaX LLC-llama3.1-8b

" # PLACEHOLDER = """ #
#

Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?

#
# """ # CSS = """ # .duplicate-button { # margin: auto !important; # color: white !important; # background: black !important; # border-radius: 100vh !important; # } # h3 { # text-align: center; # } # """ # device = "cuda" if torch.cuda.is_available() else "cpu" # tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) # model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") # model = model.eval() # @spaces.GPU() # def stream_chat( # message: str, # history: list, # system_prompt: str, # temperature: float = 0.5, # max_new_tokens: int = 32768, # top_p: float = 1.0, # top_k: int = 50, # ): # print(f'message: {message}') # print(f'history: {history}') # full_prompt = f"<>\n{system_prompt}\n<>\n\n" # for prompt, answer in history: # full_prompt += f"[INST]{prompt}[/INST]{answer}" # full_prompt += f"[INST]{message}[/INST]" # inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device) # context_length = inputs.input_ids.shape[-1] # streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) # generate_kwargs = dict( # inputs=inputs.input_ids, # max_new_tokens=max_new_tokens, # do_sample=True, # top_p=top_p, # top_k=top_k, # temperature=temperature, # num_beams=1, # streamer=streamer, # ) # thread = Thread(target=model.generate, kwargs=generate_kwargs) # thread.start() # buffer = "" # for new_text in streamer: # buffer += new_text # yield buffer # chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) # with gr.Blocks(css=CSS, theme="soft") as demo: # gr.HTML(TITLE) # gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") # gr.ChatInterface( # fn=stream_chat, # chatbot=chatbot, # fill_height=True, # additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), # additional_inputs=[ # gr.Textbox( # value="You are a helpful assistant capable of generating long-form content.", # label="System Prompt", # render=False, # ), # gr.Slider( # minimum=0, # maximum=1, # step=0.1, # value=0.5, # label="Temperature", # render=False, # ), # gr.Slider( # minimum=1024, # maximum=32768, # step=1024, # value=32768, # label="Max new tokens", # render=False, # ), # gr.Slider( # minimum=0.0, # maximum=1.0, # step=0.1, # value=1.0, # label="Top p", # render=False, # ), # gr.Slider( # minimum=1, # maximum=100, # step=1, # value=50, # label="Top k", # render=False, # ), # ], # examples=[ # ["Write a 5000-word comprehensive guide on machine learning for beginners."], # ["Create a detailed 3000-word business plan for a sustainable energy startup."], # ["Compose a 2000-word short story set in a futuristic underwater city."], # ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."], # ], # cache_examples=False, # ) # if __name__ == "__main__": # demo.launch() import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import gradio as gr from threading import Thread # Model and constants MODEL = "THUDM/LongWriter-llama3.1-8b" TITLE = "

AreaX LLC-llama3.1-8b

" PLACEHOLDER = """

Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ # Check device device = "cuda" if torch.cuda.is_available() else "cpu" # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto").eval() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 0.5, max_new_tokens: int = 4096, # Lowered max tokens for efficiency top_p: float = 1.0, top_k: int = 50, ): try: full_prompt = f"<>\n{system_prompt}\n<>\n\n" for prompt, answer in history: full_prompt += f"[INST]{prompt}[/INST]{answer}" full_prompt += f"[INST]{message}[/INST]" # Tokenize input inputs = tokenizer(full_prompt, truncation=True, max_length=2048, return_tensors="pt").to(device) context_length = inputs.input_ids.shape[-1] # Setup TextIteratorStreamer for streaming response streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) # Generation parameters generate_kwargs = dict( inputs=inputs.input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, streamer=streamer, ) # Generate text in a separate thread to avoid blocking thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() # Stream response buffer = "" for new_text in streamer: buffer += new_text yield buffer except Exception as e: yield f"An error occurred: {str(e)}" # Gradio setup chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Textbox( value="You are a helpful assistant capable of generating long-form content.", label="System Prompt", render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature", render=False, ), gr.Slider( minimum=1024, maximum=4096, # Reduced to a more manageable value step=1024, value=4096, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top p", render=False, ), gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Top k", render=False, ), ], # examples=[ # ["Write a 5000-word comprehensive guide on machine learning for beginners."], # ["Create a detailed 3000-word business plan for a sustainable energy startup."], # ["Compose a 2000-word short story set in a futuristic underwater city."], # ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."], # ], cache_examples=False, ) if __name__ == "__main__": demo.launch()