Project-W / app.py
MadsGalsgaard's picture
Update app.py
0661764 verified
raw
history blame
9.22 kB
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# ## None type
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# messages = [{"role": "system", "content": system_message}]
# # Append only the latest user message
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if message.choices[0].delta.content is not None:
# token = message.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# ],
# )
# if __name__ == "__main__":
# demo.launch()
##Running smothly CHATBOT
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# def respond(
# message: str,
# history: list[tuple[str, str]], # This will not be used
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# # Build the messages list
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": message})
# response = ""
# try:
# # Generate response from the model
# for msg in client.chat_completion(
# messages=messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# if msg.choices[0].delta.content is not None:
# token = msg.choices[0].delta.content
# response += token
# yield response
# except Exception as e:
# yield f"An error occurred: {e}"
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
### 20aug
# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
# import gradio as gr
# from threading import Thread
# MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
# HF_TOKEN = os.environ.get("HF_API_TOKEN", None)
# MODEL = os.environ.get("MODEL_ID")
# TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"
# PLACEHOLDER = """
# <center>
# <p>Hi! How can I help you today?</p>
# </center>
# """
# CSS = """
# .duplicate-button {
# margin: auto !important;
# color: white !important;
# background: black !important;
# border-radius: 100vh !important;
# }
# h3 {
# text-align: center;
# }
# """
# device = "cuda" # for GPU usage or "cpu" for CPU usage
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type= "nf4")
# tokenizer = AutoTokenizer.from_pretrained(MODEL)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL,
# torch_dtype=torch.bfloat16,
# device_map="auto",
# quantization_config=quantization_config)
# @spaces.GPU()
# def stream_chat(
# message: str,
# history: list,
# system_prompt: str,
# temperature: float = 0.8,
# max_new_tokens: int = 1024,
# top_p: float = 1.0,
# top_k: int = 20,
# penalty: float = 1.2,
# ):
# print(f'message: {message}')
# print(f'history: {history}')
# conversation = [
# {"role": "system", "content": system_prompt}
# ]
# for prompt, answer in history:
# conversation.extend([
# {"role": "user", "content": prompt},
# {"role": "assistant", "content": answer},
# ])
# conversation.append({"role": "user", "content": message})
# input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# input_ids=input_ids,
# max_new_tokens = max_new_tokens,
# do_sample = False if temperature == 0 else True,
# top_p = top_p,
# top_k = top_k,
# temperature = temperature,
# repetition_penalty=penalty,
# eos_token_id=[128001,128008,128009],
# streamer=streamer,
# )
# with torch.no_grad():
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# yield buffer
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
# with gr.Blocks(css=CSS, theme="soft") as demo:
# gr.HTML(TITLE)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
# gr.ChatInterface(
# fn=stream_chat,
# chatbot=chatbot,
# fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Textbox(
# value="You are a helpful assistant",
# label="System Prompt",
# render=False,
# ),
# gr.Slider(
# minimum=0,
# maximum=1,
# step=0.1,
# value=0.8,
# label="Temperature",
# render=False,
# ),
# gr.Slider(
# minimum=128,
# maximum=8192,
# step=1,
# value=1024,
# label="Max new tokens",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=1.0,
# label="top_p",
# render=False,
# ),
# gr.Slider(
# minimum=1,
# maximum=20,
# step=1,
# value=20,
# label="top_k",
# render=False,
# ),
# gr.Slider(
# minimum=0.0,
# maximum=2.0,
# step=0.1,
# value=1.2,
# label="Repetition penalty",
# render=False,
# ),
# ],
# examples=[
# ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
# ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
# ["Tell me a random fun fact about the Roman Empire."],
# ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
# ],
# cache_examples=False,
# )
# if __name__ == "__main__":
# demo.launch()
import os
import gradio as gr
from huggingface_hub import InferenceClient
# Your Hugging Face configuration
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
# token = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
# Initialize Inference Client with model and token
inference_client = InferenceClient()
def chat_completion(message, history):
# Pass user input through Hugging Face model
response = inference_client.chat(
model=model_name,
messages=[{"role": "user", "content": message}],
max_tokens=500,
stream=False
)
# Extract content from the response
response_text = response['choices'][0]['delta']['content']
# Return response and updated history
return response_text
# Create Gradio chat interface
chatbot = gr.ChatInterface(fn=chat_completion)
chatbot.launch()