File size: 9,221 Bytes
61d946f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c364eb
61d946f
7c364eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786bf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c364eb
786bf8b
7c364eb
786bf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c364eb
786bf8b
 
 
 
7c364eb
 
786bf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5d274e
786bf8b
 
 
 
 
 
 
 
 
 
 
 
0661764
786bf8b
 
 
0661764
786bf8b
 
 
 
 
 
 
0661764
786bf8b
c5d274e
786bf8b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# ## None type 
# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     messages = [{"role": "system", "content": system_message}]
    
#     # Append only the latest user message





#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for message in client.chat_completion(
#             messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if message.choices[0].delta.content is not None:
#                 token = message.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()


##Running smothly CHATBOT

# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     # Build the messages list
#     messages = [{"role": "system", "content": system_message}]
#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for msg in client.chat_completion(
#             messages=messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if msg.choices[0].delta.content is not None:
#                 token = msg.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

# if __name__ == "__main__":
#     demo.launch()


### 20aug

# import os
# import time
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
# import gradio as gr
# from threading import Thread

# MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
# HF_TOKEN = os.environ.get("HF_API_TOKEN", None)
# MODEL = os.environ.get("MODEL_ID")

# TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"

# PLACEHOLDER = """
# <center>
# <p>Hi! How can I help you today?</p>
# </center>
# """


# CSS = """
# .duplicate-button {
#     margin: auto !important;
#     color: white !important;
#     background: black !important;
#     border-radius: 100vh !important;
# }
# h3 {
#     text-align: center;
# }
# """

# device = "cuda" # for GPU usage or "cpu" for CPU usage

# quantization_config = BitsAndBytesConfig(
#     load_in_4bit=True,
#     bnb_4bit_compute_dtype=torch.bfloat16,
#     bnb_4bit_use_double_quant=True,
#     bnb_4bit_quant_type= "nf4")

# tokenizer = AutoTokenizer.from_pretrained(MODEL)
# model = AutoModelForCausalLM.from_pretrained(
#     MODEL,
#     torch_dtype=torch.bfloat16,
#     device_map="auto",
#     quantization_config=quantization_config)

# @spaces.GPU()
# def stream_chat(
#     message: str, 
#     history: list,
#     system_prompt: str,
#     temperature: float = 0.8, 
#     max_new_tokens: int = 1024, 
#     top_p: float = 1.0, 
#     top_k: int = 20, 
#     penalty: float = 1.2,
# ):
#     print(f'message: {message}')
#     print(f'history: {history}')

#     conversation = [
#         {"role": "system", "content": system_prompt}
#     ]
#     for prompt, answer in history:
#         conversation.extend([
#             {"role": "user", "content": prompt}, 
#             {"role": "assistant", "content": answer},
#         ])

#     conversation.append({"role": "user", "content": message})

#     input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
#     streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
#     generate_kwargs = dict(
#         input_ids=input_ids, 
#         max_new_tokens = max_new_tokens,
#         do_sample = False if temperature == 0 else True,
#         top_p = top_p,
#         top_k = top_k,
#         temperature = temperature,
#         repetition_penalty=penalty,
#         eos_token_id=[128001,128008,128009],
#         streamer=streamer,
#     )

#     with torch.no_grad():
#         thread = Thread(target=model.generate, kwargs=generate_kwargs)
#         thread.start()
        
#     buffer = ""
#     for new_text in streamer:
#         buffer += new_text
#         yield buffer

            
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

# with gr.Blocks(css=CSS, theme="soft") as demo:
#     gr.HTML(TITLE)
#     gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
#     gr.ChatInterface(
#         fn=stream_chat,
#         chatbot=chatbot,
#         fill_height=True,
#         additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
#         additional_inputs=[
#             gr.Textbox(
#                 value="You are a helpful assistant",
#                 label="System Prompt",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0,
#                 maximum=1,
#                 step=0.1,
#                 value=0.8,
#                 label="Temperature",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=128,
#                 maximum=8192,
#                 step=1,
#                 value=1024,
#                 label="Max new tokens",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 step=0.1,
#                 value=1.0,
#                 label="top_p",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=1,
#                 maximum=20,
#                 step=1,
#                 value=20,
#                 label="top_k",
#                 render=False,
#             ),
#             gr.Slider(
#                 minimum=0.0,
#                 maximum=2.0,
#                 step=0.1,
#                 value=1.2,
#                 label="Repetition penalty",
#                 render=False,
#             ),
#         ],
#         examples=[
#             ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
#             ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
#             ["Tell me a random fun fact about the Roman Empire."],
#             ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
#         ],
#         cache_examples=False,
#     )


# if __name__ == "__main__":
#     demo.launch()

import os
import gradio as gr
from huggingface_hub import InferenceClient


# Your Hugging Face configuration
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
# token = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

# Initialize Inference Client with model and token
inference_client = InferenceClient()

def chat_completion(message, history):
    # Pass user input through Hugging Face model
    response = inference_client.chat(
        model=model_name,
        messages=[{"role": "user", "content": message}],
        max_tokens=500,
        stream=False
    )
    
    # Extract content from the response
    response_text = response['choices'][0]['delta']['content']
    
    # Return response and updated history
    return response_text

# Create Gradio chat interface
chatbot = gr.ChatInterface(fn=chat_completion)
chatbot.launch()