Spaces:
Running
Running
File size: 14,641 Bytes
29ac506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
"""
Copyright © 2022 Howard Hughes Medical Institute,
Authored by Carsen Stringer and Marius Pachitariu.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of HHMI nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------------------------------
MEDIAR Prediction uses CellPose's Gradient Flow Tracking.
This code is adapted from the following codes:
[1] https://github.com/MouseLand/cellpose/blob/main/cellpose/utils.py
[2] https://github.com/MouseLand/cellpose/blob/main/cellpose/dynamics.py
[3] https://github.com/MouseLand/cellpose/blob/main/cellpose/metrics.py
"""
import torch
from torch.nn.functional import grid_sample
import numpy as np
import fastremap
from skimage import morphology
from scipy.ndimage import mean, find_objects
from scipy.ndimage.filters import maximum_filter1d
torch_GPU = torch.device("cuda")
torch_CPU = torch.device("cpu")
def labels_to_flows(labels, use_gpu=False, device=None, redo_flows=False):
"""
Convert labels (list of masks or flows) to flows for training model
"""
# Labels b x 1 x h x w
labels = labels.cpu().numpy().astype(np.int16)
nimg = len(labels)
if labels[0].ndim < 3:
labels = [labels[n][np.newaxis, :, :] for n in range(nimg)]
# Flows need to be recomputed
if labels[0].shape[0] == 1 or labels[0].ndim < 3 or redo_flows:
# compute flows; labels are fixed here to be unique, so they need to be passed back
# make sure labels are unique!
labels = [fastremap.renumber(label, in_place=True)[0] for label in labels]
veci = [
masks_to_flows(labels[n][0], use_gpu=use_gpu, device=device)
for n in range(nimg)
]
# concatenate labels, distance transform, vector flows, heat (boundary and mask are computed in augmentations)
flows = [
np.concatenate((labels[n], labels[n] > 0.5, veci[n]), axis=0).astype(
np.float32
)
for n in range(nimg)
]
return np.array(flows)
def compute_masks(
dP,
cellprob,
p=None,
niter=200,
cellprob_threshold=0.4,
flow_threshold=0.4,
interp=True,
resize=None,
use_gpu=False,
device=None,
):
"""compute masks using dynamics from dP, cellprob, and boundary"""
cp_mask = cellprob > cellprob_threshold
cp_mask = morphology.remove_small_holes(cp_mask, area_threshold=16)
cp_mask = morphology.remove_small_objects(cp_mask, min_size=16)
if np.any(cp_mask): # mask at this point is a cell cluster binary map, not labels
# follow flows
if p is None:
p, inds = follow_flows(
dP * cp_mask / 5.0,
niter=niter,
interp=interp,
use_gpu=use_gpu,
device=device,
)
if inds is None:
shape = resize if resize is not None else cellprob.shape
mask = np.zeros(shape, np.uint16)
p = np.zeros((len(shape), *shape), np.uint16)
return mask, p
# calculate masks
mask = get_masks(p, iscell=cp_mask)
# flow thresholding factored out of get_masks
shape0 = p.shape[1:]
if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0:
# make sure labels are unique at output of get_masks
mask = remove_bad_flow_masks(
mask, dP, threshold=flow_threshold, use_gpu=use_gpu, device=device
)
else: # nothing to compute, just make it compatible
shape = resize if resize is not None else cellprob.shape
mask = np.zeros(shape, np.uint16)
p = np.zeros((len(shape), *shape), np.uint16)
return mask, p
def _extend_centers_gpu(
neighbors, centers, isneighbor, Ly, Lx, n_iter=200, device=torch.device("cuda")
):
if device is not None:
device = device
nimg = neighbors.shape[0] // 9
pt = torch.from_numpy(neighbors).to(device)
T = torch.zeros((nimg, Ly, Lx), dtype=torch.double, device=device)
meds = torch.from_numpy(centers.astype(int)).to(device).long()
isneigh = torch.from_numpy(isneighbor).to(device)
for i in range(n_iter):
T[:, meds[:, 0], meds[:, 1]] += 1
Tneigh = T[:, pt[:, :, 0], pt[:, :, 1]]
Tneigh *= isneigh
T[:, pt[0, :, 0], pt[0, :, 1]] = Tneigh.mean(axis=1)
del meds, isneigh, Tneigh
T = torch.log(1.0 + T)
# gradient positions
grads = T[:, pt[[2, 1, 4, 3], :, 0], pt[[2, 1, 4, 3], :, 1]]
del pt
dy = grads[:, 0] - grads[:, 1]
dx = grads[:, 2] - grads[:, 3]
del grads
mu_torch = np.stack((dy.cpu().squeeze(), dx.cpu().squeeze()), axis=-2)
return mu_torch
def diameters(masks):
_, counts = np.unique(np.int32(masks), return_counts=True)
counts = counts[1:]
md = np.median(counts ** 0.5)
if np.isnan(md):
md = 0
md /= (np.pi ** 0.5) / 2
return md, counts ** 0.5
def masks_to_flows_gpu(masks, device=None):
if device is None:
device = torch.device("cuda")
Ly0, Lx0 = masks.shape
Ly, Lx = Ly0 + 2, Lx0 + 2
masks_padded = np.zeros((Ly, Lx), np.int64)
masks_padded[1:-1, 1:-1] = masks
# get mask pixel neighbors
y, x = np.nonzero(masks_padded)
neighborsY = np.stack((y, y - 1, y + 1, y, y, y - 1, y - 1, y + 1, y + 1), axis=0)
neighborsX = np.stack((x, x, x, x - 1, x + 1, x - 1, x + 1, x - 1, x + 1), axis=0)
neighbors = np.stack((neighborsY, neighborsX), axis=-1)
# get mask centers
slices = find_objects(masks)
centers = np.zeros((masks.max(), 2), "int")
for i, si in enumerate(slices):
if si is not None:
sr, sc = si
ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1
yi, xi = np.nonzero(masks[sr, sc] == (i + 1))
yi = yi.astype(np.int32) + 1 # add padding
xi = xi.astype(np.int32) + 1 # add padding
ymed = np.median(yi)
xmed = np.median(xi)
imin = np.argmin((xi - xmed) ** 2 + (yi - ymed) ** 2)
xmed = xi[imin]
ymed = yi[imin]
centers[i, 0] = ymed + sr.start
centers[i, 1] = xmed + sc.start
# get neighbor validator (not all neighbors are in same mask)
neighbor_masks = masks_padded[neighbors[:, :, 0], neighbors[:, :, 1]]
isneighbor = neighbor_masks == neighbor_masks[0]
ext = np.array(
[[sr.stop - sr.start + 1, sc.stop - sc.start + 1] for sr, sc in slices]
)
n_iter = 2 * (ext.sum(axis=1)).max()
# run diffusion
mu = _extend_centers_gpu(
neighbors, centers, isneighbor, Ly, Lx, n_iter=n_iter, device=device
)
# normalize
mu /= 1e-20 + (mu ** 2).sum(axis=0) ** 0.5
# put into original image
mu0 = np.zeros((2, Ly0, Lx0))
mu0[:, y - 1, x - 1] = mu
mu_c = np.zeros_like(mu0)
return mu0, mu_c
def masks_to_flows(masks, use_gpu=False, device=None):
if masks.max() == 0 or (masks != 0).sum() == 1:
# dynamics_logger.warning('empty masks!')
return np.zeros((2, *masks.shape), "float32")
if use_gpu:
if use_gpu and device is None:
device = torch_GPU
elif device is None:
device = torch_CPU
masks_to_flows_device = masks_to_flows_gpu
if masks.ndim == 3:
Lz, Ly, Lx = masks.shape
mu = np.zeros((3, Lz, Ly, Lx), np.float32)
for z in range(Lz):
mu0 = masks_to_flows_device(masks[z], device=device)[0]
mu[[1, 2], z] += mu0
for y in range(Ly):
mu0 = masks_to_flows_device(masks[:, y], device=device)[0]
mu[[0, 2], :, y] += mu0
for x in range(Lx):
mu0 = masks_to_flows_device(masks[:, :, x], device=device)[0]
mu[[0, 1], :, :, x] += mu0
return mu
elif masks.ndim == 2:
mu, mu_c = masks_to_flows_device(masks, device=device)
return mu
else:
raise ValueError("masks_to_flows only takes 2D or 3D arrays")
def steps2D_interp(p, dP, niter, use_gpu=False, device=None):
shape = dP.shape[1:]
if use_gpu:
if device is None:
device = torch_GPU
shape = (
np.array(shape)[[1, 0]].astype("float") - 1
) # Y and X dimensions (dP is 2.Ly.Lx), flipped X-1, Y-1
pt = (
torch.from_numpy(p[[1, 0]].T).float().to(device).unsqueeze(0).unsqueeze(0)
) # p is n_points by 2, so pt is [1 1 2 n_points]
im = (
torch.from_numpy(dP[[1, 0]]).float().to(device).unsqueeze(0)
) # covert flow numpy array to tensor on GPU, add dimension
# normalize pt between 0 and 1, normalize the flow
for k in range(2):
im[:, k, :, :] *= 2.0 / shape[k]
pt[:, :, :, k] /= shape[k]
# normalize to between -1 and 1
pt = pt * 2 - 1
# here is where the stepping happens
for t in range(niter):
# align_corners default is False, just added to suppress warning
dPt = grid_sample(im, pt, align_corners=False)
for k in range(2): # clamp the final pixel locations
pt[:, :, :, k] = torch.clamp(
pt[:, :, :, k] + dPt[:, k, :, :], -1.0, 1.0
)
# undo the normalization from before, reverse order of operations
pt = (pt + 1) * 0.5
for k in range(2):
pt[:, :, :, k] *= shape[k]
p = pt[:, :, :, [1, 0]].cpu().numpy().squeeze().T
return p
else:
assert print("ho")
def follow_flows(dP, mask=None, niter=200, interp=True, use_gpu=True, device=None):
shape = np.array(dP.shape[1:]).astype(np.int32)
niter = np.uint32(niter)
p = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij")
p = np.array(p).astype(np.float32)
inds = np.array(np.nonzero(np.abs(dP[0]) > 1e-3)).astype(np.int32).T
if inds.ndim < 2 or inds.shape[0] < 5:
return p, None
if not interp:
assert print("woo")
else:
p_interp = steps2D_interp(
p[:, inds[:, 0], inds[:, 1]], dP, niter, use_gpu=use_gpu, device=device
)
p[:, inds[:, 0], inds[:, 1]] = p_interp
return p, inds
def flow_error(maski, dP_net, use_gpu=False, device=None):
if dP_net.shape[1:] != maski.shape:
print("ERROR: net flow is not same size as predicted masks")
return
# flows predicted from estimated masks
dP_masks = masks_to_flows(maski, use_gpu=use_gpu, device=device)
# difference between predicted flows vs mask flows
flow_errors = np.zeros(maski.max())
for i in range(dP_masks.shape[0]):
flow_errors += mean(
(dP_masks[i] - dP_net[i] / 5.0) ** 2,
maski,
index=np.arange(1, maski.max() + 1),
)
return flow_errors, dP_masks
def remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None):
merrors, _ = flow_error(masks, flows, use_gpu, device)
badi = 1 + (merrors > threshold).nonzero()[0]
masks[np.isin(masks, badi)] = 0
return masks
def get_masks(p, iscell=None, rpad=20):
pflows = []
edges = []
shape0 = p.shape[1:]
dims = len(p)
for i in range(dims):
pflows.append(p[i].flatten().astype("int32"))
edges.append(np.arange(-0.5 - rpad, shape0[i] + 0.5 + rpad, 1))
h, _ = np.histogramdd(tuple(pflows), bins=edges)
hmax = h.copy()
for i in range(dims):
hmax = maximum_filter1d(hmax, 5, axis=i)
seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10))
Nmax = h[seeds]
isort = np.argsort(Nmax)[::-1]
for s in seeds:
s = s[isort]
pix = list(np.array(seeds).T)
shape = h.shape
if dims == 3:
expand = np.nonzero(np.ones((3, 3, 3)))
else:
expand = np.nonzero(np.ones((3, 3)))
for e in expand:
e = np.expand_dims(e, 1)
for iter in range(5):
for k in range(len(pix)):
if iter == 0:
pix[k] = list(pix[k])
newpix = []
iin = []
for i, e in enumerate(expand):
epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1
epix = epix.flatten()
iin.append(np.logical_and(epix >= 0, epix < shape[i]))
newpix.append(epix)
iin = np.all(tuple(iin), axis=0)
for p in newpix:
p = p[iin]
newpix = tuple(newpix)
igood = h[newpix] > 2
for i in range(dims):
pix[k][i] = newpix[i][igood]
if iter == 4:
pix[k] = tuple(pix[k])
M = np.zeros(h.shape, np.uint32)
for k in range(len(pix)):
M[pix[k]] = 1 + k
for i in range(dims):
pflows[i] = pflows[i] + rpad
M0 = M[tuple(pflows)]
# remove big masks
uniq, counts = fastremap.unique(M0, return_counts=True)
big = np.prod(shape0) * 0.9
bigc = uniq[counts > big]
if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
M0 = fastremap.mask(M0, bigc)
fastremap.renumber(M0, in_place=True) # convenient to guarantee non-skipped labels
M0 = np.reshape(M0, shape0)
return M0
|