File size: 14,641 Bytes
29ac506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"""
Copyright © 2022 Howard Hughes Medical Institute, 
Authored by Carsen Stringer and Marius Pachitariu.

Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, 
   this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, 
   this list of conditions and the following disclaimer in the documentation 
   and/or other materials provided with the distribution.

3. Neither the name of HHMI nor the names of its contributors may be used to 
   endorse or promote products derived from this software without specific 
   prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE.

--------------------------------------------------------------------------
MEDIAR Prediction uses CellPose's Gradient Flow Tracking.

This code is adapted from the following codes:
[1] https://github.com/MouseLand/cellpose/blob/main/cellpose/utils.py
[2] https://github.com/MouseLand/cellpose/blob/main/cellpose/dynamics.py
[3] https://github.com/MouseLand/cellpose/blob/main/cellpose/metrics.py
"""

import torch
from torch.nn.functional import grid_sample
import numpy as np
import fastremap

from skimage import morphology
from scipy.ndimage import mean, find_objects
from scipy.ndimage.filters import maximum_filter1d

torch_GPU = torch.device("cuda")
torch_CPU = torch.device("cpu")


def labels_to_flows(labels, use_gpu=False, device=None, redo_flows=False):
    """
    Convert labels (list of masks or flows) to flows for training model
    """

    # Labels b x 1 x h x w
    labels = labels.cpu().numpy().astype(np.int16)
    nimg = len(labels)

    if labels[0].ndim < 3:
        labels = [labels[n][np.newaxis, :, :] for n in range(nimg)]

    # Flows need to be recomputed
    if labels[0].shape[0] == 1 or labels[0].ndim < 3 or redo_flows:
        # compute flows; labels are fixed here to be unique, so they need to be passed back
        # make sure labels are unique!
        labels = [fastremap.renumber(label, in_place=True)[0] for label in labels]
        veci = [
            masks_to_flows(labels[n][0], use_gpu=use_gpu, device=device)
            for n in range(nimg)
        ]

        # concatenate labels, distance transform, vector flows, heat (boundary and mask are computed in augmentations)
        flows = [
            np.concatenate((labels[n], labels[n] > 0.5, veci[n]), axis=0).astype(
                np.float32
            )
            for n in range(nimg)
        ]

    return np.array(flows)


def compute_masks(
    dP,
    cellprob,
    p=None,
    niter=200,
    cellprob_threshold=0.4,
    flow_threshold=0.4,
    interp=True,
    resize=None,
    use_gpu=False,
    device=None,
):
    """compute masks using dynamics from dP, cellprob, and boundary"""

    cp_mask = cellprob > cellprob_threshold
    cp_mask = morphology.remove_small_holes(cp_mask, area_threshold=16)
    cp_mask = morphology.remove_small_objects(cp_mask, min_size=16)

    if np.any(cp_mask):  # mask at this point is a cell cluster binary map, not labels
        # follow flows
        if p is None:
            p, inds = follow_flows(
                dP * cp_mask / 5.0,
                niter=niter,
                interp=interp,
                use_gpu=use_gpu,
                device=device,
            )
            if inds is None:
                shape = resize if resize is not None else cellprob.shape
                mask = np.zeros(shape, np.uint16)
                p = np.zeros((len(shape), *shape), np.uint16)
                return mask, p

        # calculate masks
        mask = get_masks(p, iscell=cp_mask)
        
        # flow thresholding factored out of get_masks
        shape0 = p.shape[1:]
        if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0:
            # make sure labels are unique at output of get_masks
            mask = remove_bad_flow_masks(
                mask, dP, threshold=flow_threshold, use_gpu=use_gpu, device=device
            )
        else:  # nothing to compute, just make it compatible
            shape = resize if resize is not None else cellprob.shape
            mask = np.zeros(shape, np.uint16)
            p = np.zeros((len(shape), *shape), np.uint16)

    return mask, p


def _extend_centers_gpu(
    neighbors, centers, isneighbor, Ly, Lx, n_iter=200, device=torch.device("cuda")
):
    if device is not None:
        device = device
    nimg = neighbors.shape[0] // 9
    pt = torch.from_numpy(neighbors).to(device)

    T = torch.zeros((nimg, Ly, Lx), dtype=torch.double, device=device)
    meds = torch.from_numpy(centers.astype(int)).to(device).long()
    isneigh = torch.from_numpy(isneighbor).to(device)
    for i in range(n_iter):
        T[:, meds[:, 0], meds[:, 1]] += 1
        Tneigh = T[:, pt[:, :, 0], pt[:, :, 1]]
        Tneigh *= isneigh
        T[:, pt[0, :, 0], pt[0, :, 1]] = Tneigh.mean(axis=1)
    del meds, isneigh, Tneigh
    T = torch.log(1.0 + T)
    # gradient positions
    grads = T[:, pt[[2, 1, 4, 3], :, 0], pt[[2, 1, 4, 3], :, 1]]
    del pt
    dy = grads[:, 0] - grads[:, 1]
    dx = grads[:, 2] - grads[:, 3]
    del grads
    mu_torch = np.stack((dy.cpu().squeeze(), dx.cpu().squeeze()), axis=-2)
    return mu_torch


def diameters(masks):
    _, counts = np.unique(np.int32(masks), return_counts=True)
    counts = counts[1:]
    md = np.median(counts ** 0.5)
    if np.isnan(md):
        md = 0
    md /= (np.pi ** 0.5) / 2
    return md, counts ** 0.5


def masks_to_flows_gpu(masks, device=None):
    if device is None:
        device = torch.device("cuda")

    Ly0, Lx0 = masks.shape
    Ly, Lx = Ly0 + 2, Lx0 + 2

    masks_padded = np.zeros((Ly, Lx), np.int64)
    masks_padded[1:-1, 1:-1] = masks

    # get mask pixel neighbors
    y, x = np.nonzero(masks_padded)
    neighborsY = np.stack((y, y - 1, y + 1, y, y, y - 1, y - 1, y + 1, y + 1), axis=0)
    neighborsX = np.stack((x, x, x, x - 1, x + 1, x - 1, x + 1, x - 1, x + 1), axis=0)
    neighbors = np.stack((neighborsY, neighborsX), axis=-1)

    # get mask centers
    slices = find_objects(masks)

    centers = np.zeros((masks.max(), 2), "int")
    for i, si in enumerate(slices):
        if si is not None:
            sr, sc = si

            ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1
            yi, xi = np.nonzero(masks[sr, sc] == (i + 1))
            yi = yi.astype(np.int32) + 1  # add padding
            xi = xi.astype(np.int32) + 1  # add padding
            ymed = np.median(yi)
            xmed = np.median(xi)
            imin = np.argmin((xi - xmed) ** 2 + (yi - ymed) ** 2)
            xmed = xi[imin]
            ymed = yi[imin]
            centers[i, 0] = ymed + sr.start
            centers[i, 1] = xmed + sc.start

    # get neighbor validator (not all neighbors are in same mask)
    neighbor_masks = masks_padded[neighbors[:, :, 0], neighbors[:, :, 1]]
    isneighbor = neighbor_masks == neighbor_masks[0]
    ext = np.array(
        [[sr.stop - sr.start + 1, sc.stop - sc.start + 1] for sr, sc in slices]
    )
    n_iter = 2 * (ext.sum(axis=1)).max()
    # run diffusion
    mu = _extend_centers_gpu(
        neighbors, centers, isneighbor, Ly, Lx, n_iter=n_iter, device=device
    )

    # normalize
    mu /= 1e-20 + (mu ** 2).sum(axis=0) ** 0.5

    # put into original image
    mu0 = np.zeros((2, Ly0, Lx0))
    mu0[:, y - 1, x - 1] = mu
    mu_c = np.zeros_like(mu0)
    return mu0, mu_c


def masks_to_flows(masks, use_gpu=False, device=None):
    if masks.max() == 0 or (masks != 0).sum() == 1:
        # dynamics_logger.warning('empty masks!')
        return np.zeros((2, *masks.shape), "float32")

    if use_gpu:
        if use_gpu and device is None:
            device = torch_GPU
        elif device is None:
            device = torch_CPU
        masks_to_flows_device = masks_to_flows_gpu

    if masks.ndim == 3:
        Lz, Ly, Lx = masks.shape
        mu = np.zeros((3, Lz, Ly, Lx), np.float32)
        for z in range(Lz):
            mu0 = masks_to_flows_device(masks[z], device=device)[0]
            mu[[1, 2], z] += mu0
        for y in range(Ly):
            mu0 = masks_to_flows_device(masks[:, y], device=device)[0]
            mu[[0, 2], :, y] += mu0
        for x in range(Lx):
            mu0 = masks_to_flows_device(masks[:, :, x], device=device)[0]
            mu[[0, 1], :, :, x] += mu0
        return mu
    elif masks.ndim == 2:
        mu, mu_c = masks_to_flows_device(masks, device=device)
        return mu

    else:
        raise ValueError("masks_to_flows only takes 2D or 3D arrays")


def steps2D_interp(p, dP, niter, use_gpu=False, device=None):
    shape = dP.shape[1:]
    if use_gpu:
        if device is None:
            device = torch_GPU
        shape = (
            np.array(shape)[[1, 0]].astype("float") - 1
        )  # Y and X dimensions (dP is 2.Ly.Lx), flipped X-1, Y-1
        pt = (
            torch.from_numpy(p[[1, 0]].T).float().to(device).unsqueeze(0).unsqueeze(0)
        )  # p is n_points by 2, so pt is [1 1 2 n_points]
        im = (
            torch.from_numpy(dP[[1, 0]]).float().to(device).unsqueeze(0)
        )  # covert flow numpy array to tensor on GPU, add dimension
        # normalize pt between  0 and  1, normalize the flow
        for k in range(2):
            im[:, k, :, :] *= 2.0 / shape[k]
            pt[:, :, :, k] /= shape[k]

        # normalize to between -1 and 1
        pt = pt * 2 - 1

        # here is where the stepping happens
        for t in range(niter):
            # align_corners default is False, just added to suppress warning
            dPt = grid_sample(im, pt, align_corners=False)

            for k in range(2):  # clamp the final pixel locations
                pt[:, :, :, k] = torch.clamp(
                    pt[:, :, :, k] + dPt[:, k, :, :], -1.0, 1.0
                )

        # undo the normalization from before, reverse order of operations
        pt = (pt + 1) * 0.5
        for k in range(2):
            pt[:, :, :, k] *= shape[k]

        p = pt[:, :, :, [1, 0]].cpu().numpy().squeeze().T
        return p

    else:
        assert print("ho")


def follow_flows(dP, mask=None, niter=200, interp=True, use_gpu=True, device=None):
    shape = np.array(dP.shape[1:]).astype(np.int32)
    niter = np.uint32(niter)

    p = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij")
    p = np.array(p).astype(np.float32)

    inds = np.array(np.nonzero(np.abs(dP[0]) > 1e-3)).astype(np.int32).T

    if inds.ndim < 2 or inds.shape[0] < 5:
        return p, None

    if not interp:
        assert print("woo")

    else:
        p_interp = steps2D_interp(
            p[:, inds[:, 0], inds[:, 1]], dP, niter, use_gpu=use_gpu, device=device
        )
        p[:, inds[:, 0], inds[:, 1]] = p_interp

    return p, inds


def flow_error(maski, dP_net, use_gpu=False, device=None):
    if dP_net.shape[1:] != maski.shape:
        print("ERROR: net flow is not same size as predicted masks")
        return

    # flows predicted from estimated masks
    dP_masks = masks_to_flows(maski, use_gpu=use_gpu, device=device)
    # difference between predicted flows vs mask flows
    flow_errors = np.zeros(maski.max())
    for i in range(dP_masks.shape[0]):
        flow_errors += mean(
            (dP_masks[i] - dP_net[i] / 5.0) ** 2,
            maski,
            index=np.arange(1, maski.max() + 1),
        )

    return flow_errors, dP_masks


def remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None):
    merrors, _ = flow_error(masks, flows, use_gpu, device)
    badi = 1 + (merrors > threshold).nonzero()[0]
    masks[np.isin(masks, badi)] = 0
    return masks


def get_masks(p, iscell=None, rpad=20):
    pflows = []
    edges = []
    shape0 = p.shape[1:]
    dims = len(p)

    for i in range(dims):
        pflows.append(p[i].flatten().astype("int32"))
        edges.append(np.arange(-0.5 - rpad, shape0[i] + 0.5 + rpad, 1))

    h, _ = np.histogramdd(tuple(pflows), bins=edges)
    hmax = h.copy()
    for i in range(dims):
        hmax = maximum_filter1d(hmax, 5, axis=i)

    seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10))
    Nmax = h[seeds]
    isort = np.argsort(Nmax)[::-1]
    for s in seeds:
        s = s[isort]

    pix = list(np.array(seeds).T)

    shape = h.shape
    if dims == 3:
        expand = np.nonzero(np.ones((3, 3, 3)))
    else:
        expand = np.nonzero(np.ones((3, 3)))
    for e in expand:
        e = np.expand_dims(e, 1)

    for iter in range(5):
        for k in range(len(pix)):
            if iter == 0:
                pix[k] = list(pix[k])
            newpix = []
            iin = []
            for i, e in enumerate(expand):
                epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1
                epix = epix.flatten()
                iin.append(np.logical_and(epix >= 0, epix < shape[i]))
                newpix.append(epix)
            iin = np.all(tuple(iin), axis=0)
            for p in newpix:
                p = p[iin]
            newpix = tuple(newpix)
            igood = h[newpix] > 2
            for i in range(dims):
                pix[k][i] = newpix[i][igood]
            if iter == 4:
                pix[k] = tuple(pix[k])

    M = np.zeros(h.shape, np.uint32)
    for k in range(len(pix)):
        M[pix[k]] = 1 + k

    for i in range(dims):
        pflows[i] = pflows[i] + rpad
    M0 = M[tuple(pflows)]

    # remove big masks
    uniq, counts = fastremap.unique(M0, return_counts=True)
    big = np.prod(shape0) * 0.9
    bigc = uniq[counts > big]
    if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
        M0 = fastremap.mask(M0, bigc)
    fastremap.renumber(M0, in_place=True)  # convenient to guarantee non-skipped labels
    M0 = np.reshape(M0, shape0)
    return M0