Spaces:
Running
Running
Upload 9 files
Browse files- .gitattributes +3 -0
- BasePredictor.py +120 -0
- MEDIARFormer.py +102 -0
- Predictor.py +234 -0
- img1.png +3 -0
- img2.png +3 -0
- img3.png +3 -0
- requirements.txt +32 -0
- trained_model_200.pt +3 -0
- utils.py +429 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
img1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
img2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
img3.png filter=lfs diff=lfs merge=lfs -text
|
BasePredictor.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import time, os
|
4 |
+
import tifffile as tif
|
5 |
+
|
6 |
+
from datetime import datetime
|
7 |
+
from zipfile import ZipFile
|
8 |
+
from pytz import timezone
|
9 |
+
|
10 |
+
from train_tools.data_utils.transforms import get_pred_transforms
|
11 |
+
|
12 |
+
|
13 |
+
class BasePredictor:
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
model,
|
17 |
+
device,
|
18 |
+
input_path,
|
19 |
+
output_path,
|
20 |
+
make_submission=False,
|
21 |
+
exp_name=None,
|
22 |
+
algo_params=None,
|
23 |
+
):
|
24 |
+
self.model = model
|
25 |
+
self.device = device
|
26 |
+
self.input_path = input_path
|
27 |
+
self.output_path = output_path
|
28 |
+
self.make_submission = make_submission
|
29 |
+
self.exp_name = exp_name
|
30 |
+
|
31 |
+
# Assign algoritm-specific arguments
|
32 |
+
if algo_params:
|
33 |
+
self.__dict__.update((k, v) for k, v in algo_params.items())
|
34 |
+
|
35 |
+
# Prepare inference environments
|
36 |
+
self._setups()
|
37 |
+
|
38 |
+
@torch.no_grad()
|
39 |
+
def conduct_prediction(self):
|
40 |
+
self.model.to(self.device)
|
41 |
+
self.model.eval()
|
42 |
+
total_time = 0
|
43 |
+
total_times = []
|
44 |
+
|
45 |
+
for img_name in self.img_names:
|
46 |
+
img_data = self._get_img_data(img_name)
|
47 |
+
img_data = img_data.to(self.device)
|
48 |
+
|
49 |
+
start = time.time()
|
50 |
+
|
51 |
+
pred_mask = self._inference(img_data)
|
52 |
+
pred_mask = self._post_process(pred_mask.squeeze(0).cpu().numpy())
|
53 |
+
self.write_pred_mask(
|
54 |
+
pred_mask, self.output_path, img_name, self.make_submission
|
55 |
+
)
|
56 |
+
|
57 |
+
end = time.time()
|
58 |
+
|
59 |
+
time_cost = end - start
|
60 |
+
total_times.append(time_cost)
|
61 |
+
total_time += time_cost
|
62 |
+
print(
|
63 |
+
f"Prediction finished: {img_name}; img size = {img_data.shape}; costing: {time_cost:.2f}s"
|
64 |
+
)
|
65 |
+
|
66 |
+
print(f"\n Total Time Cost: {total_time:.2f}s")
|
67 |
+
|
68 |
+
if self.make_submission:
|
69 |
+
fname = "%s.zip" % self.exp_name
|
70 |
+
|
71 |
+
os.makedirs("./submissions", exist_ok=True)
|
72 |
+
submission_path = os.path.join("./submissions", fname)
|
73 |
+
|
74 |
+
with ZipFile(submission_path, "w") as zipObj2:
|
75 |
+
pred_names = sorted(os.listdir(self.output_path))
|
76 |
+
for pred_name in pred_names:
|
77 |
+
pred_path = os.path.join(self.output_path, pred_name)
|
78 |
+
zipObj2.write(pred_path)
|
79 |
+
|
80 |
+
print("\n>>>>> Submission file is saved at: %s\n" % submission_path)
|
81 |
+
|
82 |
+
return time_cost
|
83 |
+
|
84 |
+
def write_pred_mask(self, pred_mask, output_dir, image_name, submission=False):
|
85 |
+
|
86 |
+
# All images should contain at least 5 cells
|
87 |
+
if submission:
|
88 |
+
if not (np.max(pred_mask) > 5):
|
89 |
+
print("[!Caution] Only %d Cells Detected!!!\n" % np.max(pred_mask))
|
90 |
+
|
91 |
+
file_name = image_name.split(".")[0]
|
92 |
+
file_name = file_name + "_label.tiff"
|
93 |
+
file_path = os.path.join(output_dir, file_name)
|
94 |
+
|
95 |
+
tif.imwrite(file_path, pred_mask, compression="zlib")
|
96 |
+
|
97 |
+
def _setups(self):
|
98 |
+
self.pred_transforms = get_pred_transforms()
|
99 |
+
os.makedirs(self.output_path, exist_ok=True)
|
100 |
+
|
101 |
+
now = datetime.now(timezone("Asia/Seoul"))
|
102 |
+
dt_string = now.strftime("%m%d_%H%M")
|
103 |
+
self.exp_name = (
|
104 |
+
self.exp_name + dt_string if self.exp_name is not None else dt_string
|
105 |
+
)
|
106 |
+
|
107 |
+
self.img_names = sorted(os.listdir(self.input_path))
|
108 |
+
|
109 |
+
def _get_img_data(self, img_name):
|
110 |
+
img_path = os.path.join(self.input_path, img_name)
|
111 |
+
img_data = self.pred_transforms(img_path)
|
112 |
+
img_data = img_data.unsqueeze(0)
|
113 |
+
|
114 |
+
return img_data
|
115 |
+
|
116 |
+
def _inference(self, img_data):
|
117 |
+
raise NotImplementedError
|
118 |
+
|
119 |
+
def _post_process(self, pred_mask):
|
120 |
+
raise NotImplementedError
|
MEDIARFormer.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from segmentation_models_pytorch import MAnet
|
5 |
+
from segmentation_models_pytorch.base.modules import Activation
|
6 |
+
|
7 |
+
__all__ = ["MEDIARFormer"]
|
8 |
+
|
9 |
+
|
10 |
+
class MEDIARFormer(MAnet):
|
11 |
+
"""MEDIAR-Former Model"""
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
encoder_name="mit_b5", # Default encoder
|
16 |
+
encoder_weights="imagenet", # Pre-trained weights
|
17 |
+
decoder_channels=(1024, 512, 256, 128, 64), # Decoder configuration
|
18 |
+
decoder_pab_channels=256, # Decoder Pyramid Attention Block channels
|
19 |
+
in_channels=3, # Number of input channels
|
20 |
+
classes=3, # Number of output classes
|
21 |
+
):
|
22 |
+
# Initialize the MAnet model with provided parameters
|
23 |
+
super().__init__(
|
24 |
+
encoder_name=encoder_name,
|
25 |
+
encoder_weights=encoder_weights,
|
26 |
+
decoder_channels=decoder_channels,
|
27 |
+
decoder_pab_channels=decoder_pab_channels,
|
28 |
+
in_channels=in_channels,
|
29 |
+
classes=classes,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Remove the default segmentation head as it's not used in this architecture
|
33 |
+
self.segmentation_head = None
|
34 |
+
|
35 |
+
# Modify all activation functions in the encoder and decoder from ReLU to Mish
|
36 |
+
_convert_activations(self.encoder, nn.ReLU, nn.Mish(inplace=True))
|
37 |
+
_convert_activations(self.decoder, nn.ReLU, nn.Mish(inplace=True))
|
38 |
+
|
39 |
+
# Add custom segmentation heads for different segmentation tasks
|
40 |
+
self.cellprob_head = DeepSegmentationHead(
|
41 |
+
in_channels=decoder_channels[-1], out_channels=1
|
42 |
+
)
|
43 |
+
self.gradflow_head = DeepSegmentationHead(
|
44 |
+
in_channels=decoder_channels[-1], out_channels=2
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
"""Forward pass through the network"""
|
49 |
+
# Ensure the input shape is correct
|
50 |
+
self.check_input_shape(x)
|
51 |
+
|
52 |
+
# Encode the input and then decode it
|
53 |
+
features = self.encoder(x)
|
54 |
+
decoder_output = self.decoder(*features)
|
55 |
+
|
56 |
+
# Generate masks for cell probability and gradient flows
|
57 |
+
cellprob_mask = self.cellprob_head(decoder_output)
|
58 |
+
gradflow_mask = self.gradflow_head(decoder_output)
|
59 |
+
|
60 |
+
# Concatenate the masks for output
|
61 |
+
masks = torch.cat([gradflow_mask, cellprob_mask], dim=1)
|
62 |
+
|
63 |
+
return masks
|
64 |
+
|
65 |
+
|
66 |
+
class DeepSegmentationHead(nn.Sequential):
|
67 |
+
"""Custom segmentation head for generating specific masks"""
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1
|
71 |
+
):
|
72 |
+
# Define a sequence of layers for the segmentation head
|
73 |
+
layers = [
|
74 |
+
nn.Conv2d(
|
75 |
+
in_channels,
|
76 |
+
in_channels // 2,
|
77 |
+
kernel_size=kernel_size,
|
78 |
+
padding=kernel_size // 2,
|
79 |
+
),
|
80 |
+
nn.Mish(inplace=True),
|
81 |
+
nn.BatchNorm2d(in_channels // 2),
|
82 |
+
nn.Conv2d(
|
83 |
+
in_channels // 2,
|
84 |
+
out_channels,
|
85 |
+
kernel_size=kernel_size,
|
86 |
+
padding=kernel_size // 2,
|
87 |
+
),
|
88 |
+
nn.UpsamplingBilinear2d(scale_factor=upsampling)
|
89 |
+
if upsampling > 1
|
90 |
+
else nn.Identity(),
|
91 |
+
Activation(activation) if activation else nn.Identity(),
|
92 |
+
]
|
93 |
+
super().__init__(*layers)
|
94 |
+
|
95 |
+
|
96 |
+
def _convert_activations(module, from_activation, to_activation):
|
97 |
+
"""Recursively convert activation functions in a module"""
|
98 |
+
for name, child in module.named_children():
|
99 |
+
if isinstance(child, from_activation):
|
100 |
+
setattr(module, name, to_activation)
|
101 |
+
else:
|
102 |
+
_convert_activations(child, from_activation, to_activation)
|
Predictor.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import os, sys
|
4 |
+
from monai.inferers import sliding_window_inference
|
5 |
+
|
6 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), "../../")))
|
7 |
+
|
8 |
+
from BasePredictor import BasePredictor
|
9 |
+
from utils import compute_masks
|
10 |
+
|
11 |
+
__all__ = ["Predictor"]
|
12 |
+
|
13 |
+
|
14 |
+
class Predictor(BasePredictor):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
model,
|
18 |
+
device,
|
19 |
+
input_path,
|
20 |
+
output_path,
|
21 |
+
make_submission=False,
|
22 |
+
exp_name=None,
|
23 |
+
algo_params=None,
|
24 |
+
):
|
25 |
+
super(Predictor, self).__init__(
|
26 |
+
model,
|
27 |
+
device,
|
28 |
+
input_path,
|
29 |
+
output_path,
|
30 |
+
make_submission,
|
31 |
+
exp_name,
|
32 |
+
algo_params,
|
33 |
+
)
|
34 |
+
self.hflip_tta = HorizontalFlip()
|
35 |
+
self.vflip_tta = VerticalFlip()
|
36 |
+
|
37 |
+
@torch.no_grad()
|
38 |
+
def _inference(self, img_data):
|
39 |
+
"""Conduct model prediction"""
|
40 |
+
|
41 |
+
img_data = img_data.to(self.device)
|
42 |
+
img_base = img_data
|
43 |
+
outputs_base = self._window_inference(img_base)
|
44 |
+
outputs_base = outputs_base.cpu().squeeze()
|
45 |
+
img_base.cpu()
|
46 |
+
|
47 |
+
if not self.use_tta:
|
48 |
+
pred_mask = outputs_base
|
49 |
+
return pred_mask
|
50 |
+
|
51 |
+
else:
|
52 |
+
# HorizontalFlip TTA
|
53 |
+
img_hflip = self.hflip_tta.apply_aug_image(img_data, apply=True)
|
54 |
+
outputs_hflip = self._window_inference(img_hflip)
|
55 |
+
outputs_hflip = self.hflip_tta.apply_deaug_mask(outputs_hflip, apply=True)
|
56 |
+
outputs_hflip = outputs_hflip.cpu().squeeze()
|
57 |
+
img_hflip = img_hflip.cpu()
|
58 |
+
|
59 |
+
# VertricalFlip TTA
|
60 |
+
img_vflip = self.vflip_tta.apply_aug_image(img_data, apply=True)
|
61 |
+
outputs_vflip = self._window_inference(img_vflip)
|
62 |
+
outputs_vflip = self.vflip_tta.apply_deaug_mask(outputs_vflip, apply=True)
|
63 |
+
outputs_vflip = outputs_vflip.cpu().squeeze()
|
64 |
+
img_vflip = img_vflip.cpu()
|
65 |
+
|
66 |
+
# Merge Results
|
67 |
+
pred_mask = torch.zeros_like(outputs_base)
|
68 |
+
pred_mask[0] = (outputs_base[0] + outputs_hflip[0] - outputs_vflip[0]) / 3
|
69 |
+
pred_mask[1] = (outputs_base[1] - outputs_hflip[1] + outputs_vflip[1]) / 3
|
70 |
+
pred_mask[2] = (outputs_base[2] + outputs_hflip[2] + outputs_vflip[2]) / 3
|
71 |
+
|
72 |
+
return pred_mask
|
73 |
+
|
74 |
+
def _window_inference(self, img_data, aux=False):
|
75 |
+
"""Inference on RoI-sized window"""
|
76 |
+
outputs = sliding_window_inference(
|
77 |
+
img_data,
|
78 |
+
roi_size=512,
|
79 |
+
sw_batch_size=4,
|
80 |
+
predictor=self.model if not aux else self.model_aux,
|
81 |
+
padding_mode="constant",
|
82 |
+
mode="gaussian",
|
83 |
+
overlap=0.6,
|
84 |
+
)
|
85 |
+
|
86 |
+
return outputs
|
87 |
+
|
88 |
+
def _post_process(self, pred_mask):
|
89 |
+
"""Generate cell instance masks."""
|
90 |
+
dP, cellprob = pred_mask[:2], self._sigmoid(pred_mask[-1])
|
91 |
+
H, W = pred_mask.shape[-2], pred_mask.shape[-1]
|
92 |
+
|
93 |
+
if np.prod(H * W) < (5000 * 5000):
|
94 |
+
pred_mask = compute_masks(
|
95 |
+
dP,
|
96 |
+
cellprob,
|
97 |
+
use_gpu=True,
|
98 |
+
flow_threshold=0.4,
|
99 |
+
device=self.device,
|
100 |
+
cellprob_threshold=0.5,
|
101 |
+
)[0]
|
102 |
+
|
103 |
+
else:
|
104 |
+
print("\n[Whole Slide] Grid Prediction starting...")
|
105 |
+
roi_size = 2000
|
106 |
+
|
107 |
+
# Get patch grid by roi_size
|
108 |
+
if H % roi_size != 0:
|
109 |
+
n_H = H // roi_size + 1
|
110 |
+
new_H = roi_size * n_H
|
111 |
+
else:
|
112 |
+
n_H = H // roi_size
|
113 |
+
new_H = H
|
114 |
+
|
115 |
+
if W % roi_size != 0:
|
116 |
+
n_W = W // roi_size + 1
|
117 |
+
new_W = roi_size * n_W
|
118 |
+
else:
|
119 |
+
n_W = W // roi_size
|
120 |
+
new_W = W
|
121 |
+
|
122 |
+
# Allocate values on the grid
|
123 |
+
pred_pad = np.zeros((new_H, new_W), dtype=np.uint32)
|
124 |
+
dP_pad = np.zeros((2, new_H, new_W), dtype=np.float32)
|
125 |
+
cellprob_pad = np.zeros((new_H, new_W), dtype=np.float32)
|
126 |
+
|
127 |
+
dP_pad[:, :H, :W], cellprob_pad[:H, :W] = dP, cellprob
|
128 |
+
|
129 |
+
for i in range(n_H):
|
130 |
+
for j in range(n_W):
|
131 |
+
print("Pred on Grid (%d, %d) processing..." % (i, j))
|
132 |
+
dP_roi = dP_pad[
|
133 |
+
:,
|
134 |
+
roi_size * i : roi_size * (i + 1),
|
135 |
+
roi_size * j : roi_size * (j + 1),
|
136 |
+
]
|
137 |
+
cellprob_roi = cellprob_pad[
|
138 |
+
roi_size * i : roi_size * (i + 1),
|
139 |
+
roi_size * j : roi_size * (j + 1),
|
140 |
+
]
|
141 |
+
|
142 |
+
pred_mask = compute_masks(
|
143 |
+
dP_roi,
|
144 |
+
cellprob_roi,
|
145 |
+
use_gpu=True,
|
146 |
+
flow_threshold=0.4,
|
147 |
+
device=self.device,
|
148 |
+
cellprob_threshold=0.5,
|
149 |
+
)[0]
|
150 |
+
|
151 |
+
pred_pad[
|
152 |
+
roi_size * i : roi_size * (i + 1),
|
153 |
+
roi_size * j : roi_size * (j + 1),
|
154 |
+
] = pred_mask
|
155 |
+
|
156 |
+
pred_mask = pred_pad[:H, :W]
|
157 |
+
|
158 |
+
return pred_mask
|
159 |
+
|
160 |
+
def _sigmoid(self, z):
|
161 |
+
return 1 / (1 + np.exp(-z))
|
162 |
+
|
163 |
+
|
164 |
+
"""
|
165 |
+
Adapted from the following references:
|
166 |
+
[1] https://github.com/qubvel/ttach/blob/master/ttach/transforms.py
|
167 |
+
|
168 |
+
"""
|
169 |
+
|
170 |
+
|
171 |
+
def hflip(x):
|
172 |
+
"""flip batch of images horizontally"""
|
173 |
+
return x.flip(3)
|
174 |
+
|
175 |
+
|
176 |
+
def vflip(x):
|
177 |
+
"""flip batch of images vertically"""
|
178 |
+
return x.flip(2)
|
179 |
+
|
180 |
+
|
181 |
+
class DualTransform:
|
182 |
+
identity_param = None
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self, name: str, params,
|
186 |
+
):
|
187 |
+
self.params = params
|
188 |
+
self.pname = name
|
189 |
+
|
190 |
+
def apply_aug_image(self, image, *args, **params):
|
191 |
+
raise NotImplementedError
|
192 |
+
|
193 |
+
def apply_deaug_mask(self, mask, *args, **params):
|
194 |
+
raise NotImplementedError
|
195 |
+
|
196 |
+
|
197 |
+
class HorizontalFlip(DualTransform):
|
198 |
+
"""Flip images horizontally (left -> right)"""
|
199 |
+
|
200 |
+
identity_param = False
|
201 |
+
|
202 |
+
def __init__(self):
|
203 |
+
super().__init__("apply", [False, True])
|
204 |
+
|
205 |
+
def apply_aug_image(self, image, apply=False, **kwargs):
|
206 |
+
if apply:
|
207 |
+
image = hflip(image)
|
208 |
+
return image
|
209 |
+
|
210 |
+
def apply_deaug_mask(self, mask, apply=False, **kwargs):
|
211 |
+
if apply:
|
212 |
+
mask = hflip(mask)
|
213 |
+
return mask
|
214 |
+
|
215 |
+
|
216 |
+
class VerticalFlip(DualTransform):
|
217 |
+
"""Flip images vertically (up -> down)"""
|
218 |
+
|
219 |
+
identity_param = False
|
220 |
+
|
221 |
+
def __init__(self):
|
222 |
+
super().__init__("apply", [False, True])
|
223 |
+
|
224 |
+
def apply_aug_image(self, image, apply=False, **kwargs):
|
225 |
+
if apply:
|
226 |
+
image = vflip(image)
|
227 |
+
|
228 |
+
return image
|
229 |
+
|
230 |
+
def apply_deaug_mask(self, mask, apply=False, **kwargs):
|
231 |
+
if apply:
|
232 |
+
mask = vflip(mask)
|
233 |
+
|
234 |
+
return mask
|
img1.png
ADDED
![]() |
Git LFS Details
|
img2.png
ADDED
![]() |
Git LFS Details
|
img3.png
ADDED
![]() |
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
accelerate
|
6 |
+
opencv-python
|
7 |
+
pillow
|
8 |
+
fastremap==1.14.1
|
9 |
+
monai==1.3.0
|
10 |
+
numba==0.57.1
|
11 |
+
numpy==1.24.3
|
12 |
+
pandas==2.0.3
|
13 |
+
pytz==2023.3.post1
|
14 |
+
scipy==1.12.0
|
15 |
+
segmentation_models_pytorch==0.3.3
|
16 |
+
tifffile==2023.4.12
|
17 |
+
torch==2.1.2
|
18 |
+
tqdm==4.65.0
|
19 |
+
wandb==0.16.2
|
20 |
+
scikit-image
|
21 |
+
matplotlib
|
22 |
+
segmentation-models-pytorch==0.3.1
|
23 |
+
TensorFlow
|
24 |
+
stardist
|
25 |
+
csbdeep
|
26 |
+
matplotlib
|
27 |
+
scikit-image
|
28 |
+
numpy
|
29 |
+
scipy
|
30 |
+
cellpose
|
31 |
+
natsort
|
32 |
+
|
trained_model_200.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a15e5c6dfecd0b01c900ed7951aefb66d0c646eccb4bc12bc2fecb78715fcf6
|
3 |
+
size 14952483
|
utils.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright © 2022 Howard Hughes Medical Institute,
|
3 |
+
Authored by Carsen Stringer and Marius Pachitariu.
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions are met:
|
7 |
+
|
8 |
+
1. Redistributions of source code must retain the above copyright notice,
|
9 |
+
this list of conditions and the following disclaimer.
|
10 |
+
|
11 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
this list of conditions and the following disclaimer in the documentation
|
13 |
+
and/or other materials provided with the distribution.
|
14 |
+
|
15 |
+
3. Neither the name of HHMI nor the names of its contributors may be used to
|
16 |
+
endorse or promote products derived from this software without specific
|
17 |
+
prior written permission.
|
18 |
+
|
19 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
23 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27 |
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28 |
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29 |
+
POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
--------------------------------------------------------------------------
|
32 |
+
MEDIAR Prediction uses CellPose's Gradient Flow Tracking.
|
33 |
+
|
34 |
+
This code is adapted from the following codes:
|
35 |
+
[1] https://github.com/MouseLand/cellpose/blob/main/cellpose/utils.py
|
36 |
+
[2] https://github.com/MouseLand/cellpose/blob/main/cellpose/dynamics.py
|
37 |
+
[3] https://github.com/MouseLand/cellpose/blob/main/cellpose/metrics.py
|
38 |
+
"""
|
39 |
+
|
40 |
+
import torch
|
41 |
+
from torch.nn.functional import grid_sample
|
42 |
+
import numpy as np
|
43 |
+
import fastremap
|
44 |
+
|
45 |
+
from skimage import morphology
|
46 |
+
from scipy.ndimage import mean, find_objects
|
47 |
+
from scipy.ndimage.filters import maximum_filter1d
|
48 |
+
|
49 |
+
torch_GPU = torch.device("cuda")
|
50 |
+
torch_CPU = torch.device("cpu")
|
51 |
+
|
52 |
+
|
53 |
+
def labels_to_flows(labels, use_gpu=False, device=None, redo_flows=False):
|
54 |
+
"""
|
55 |
+
Convert labels (list of masks or flows) to flows for training model
|
56 |
+
"""
|
57 |
+
|
58 |
+
# Labels b x 1 x h x w
|
59 |
+
labels = labels.cpu().numpy().astype(np.int16)
|
60 |
+
nimg = len(labels)
|
61 |
+
|
62 |
+
if labels[0].ndim < 3:
|
63 |
+
labels = [labels[n][np.newaxis, :, :] for n in range(nimg)]
|
64 |
+
|
65 |
+
# Flows need to be recomputed
|
66 |
+
if labels[0].shape[0] == 1 or labels[0].ndim < 3 or redo_flows:
|
67 |
+
# compute flows; labels are fixed here to be unique, so they need to be passed back
|
68 |
+
# make sure labels are unique!
|
69 |
+
labels = [fastremap.renumber(label, in_place=True)[0] for label in labels]
|
70 |
+
veci = [
|
71 |
+
masks_to_flows(labels[n][0], use_gpu=use_gpu, device=device)
|
72 |
+
for n in range(nimg)
|
73 |
+
]
|
74 |
+
|
75 |
+
# concatenate labels, distance transform, vector flows, heat (boundary and mask are computed in augmentations)
|
76 |
+
flows = [
|
77 |
+
np.concatenate((labels[n], labels[n] > 0.5, veci[n]), axis=0).astype(
|
78 |
+
np.float32
|
79 |
+
)
|
80 |
+
for n in range(nimg)
|
81 |
+
]
|
82 |
+
|
83 |
+
return np.array(flows)
|
84 |
+
|
85 |
+
|
86 |
+
def compute_masks(
|
87 |
+
dP,
|
88 |
+
cellprob,
|
89 |
+
p=None,
|
90 |
+
niter=200,
|
91 |
+
cellprob_threshold=0.4,
|
92 |
+
flow_threshold=0.4,
|
93 |
+
interp=True,
|
94 |
+
resize=None,
|
95 |
+
use_gpu=False,
|
96 |
+
device=None,
|
97 |
+
):
|
98 |
+
"""compute masks using dynamics from dP, cellprob, and boundary"""
|
99 |
+
|
100 |
+
cp_mask = cellprob > cellprob_threshold
|
101 |
+
cp_mask = morphology.remove_small_holes(cp_mask, area_threshold=16)
|
102 |
+
cp_mask = morphology.remove_small_objects(cp_mask, min_size=16)
|
103 |
+
|
104 |
+
if np.any(cp_mask): # mask at this point is a cell cluster binary map, not labels
|
105 |
+
# follow flows
|
106 |
+
if p is None:
|
107 |
+
p, inds = follow_flows(
|
108 |
+
dP * cp_mask / 5.0,
|
109 |
+
niter=niter,
|
110 |
+
interp=interp,
|
111 |
+
use_gpu=use_gpu,
|
112 |
+
device=device,
|
113 |
+
)
|
114 |
+
if inds is None:
|
115 |
+
shape = resize if resize is not None else cellprob.shape
|
116 |
+
mask = np.zeros(shape, np.uint16)
|
117 |
+
p = np.zeros((len(shape), *shape), np.uint16)
|
118 |
+
return mask, p
|
119 |
+
|
120 |
+
# calculate masks
|
121 |
+
mask = get_masks(p, iscell=cp_mask)
|
122 |
+
|
123 |
+
# flow thresholding factored out of get_masks
|
124 |
+
shape0 = p.shape[1:]
|
125 |
+
if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0:
|
126 |
+
# make sure labels are unique at output of get_masks
|
127 |
+
mask = remove_bad_flow_masks(
|
128 |
+
mask, dP, threshold=flow_threshold, use_gpu=use_gpu, device=device
|
129 |
+
)
|
130 |
+
else: # nothing to compute, just make it compatible
|
131 |
+
shape = resize if resize is not None else cellprob.shape
|
132 |
+
mask = np.zeros(shape, np.uint16)
|
133 |
+
p = np.zeros((len(shape), *shape), np.uint16)
|
134 |
+
|
135 |
+
return mask, p
|
136 |
+
|
137 |
+
|
138 |
+
def _extend_centers_gpu(
|
139 |
+
neighbors, centers, isneighbor, Ly, Lx, n_iter=200, device=torch.device("cuda")
|
140 |
+
):
|
141 |
+
if device is not None:
|
142 |
+
device = device
|
143 |
+
nimg = neighbors.shape[0] // 9
|
144 |
+
pt = torch.from_numpy(neighbors).to(device)
|
145 |
+
|
146 |
+
T = torch.zeros((nimg, Ly, Lx), dtype=torch.double, device=device)
|
147 |
+
meds = torch.from_numpy(centers.astype(int)).to(device).long()
|
148 |
+
isneigh = torch.from_numpy(isneighbor).to(device)
|
149 |
+
for i in range(n_iter):
|
150 |
+
T[:, meds[:, 0], meds[:, 1]] += 1
|
151 |
+
Tneigh = T[:, pt[:, :, 0], pt[:, :, 1]]
|
152 |
+
Tneigh *= isneigh
|
153 |
+
T[:, pt[0, :, 0], pt[0, :, 1]] = Tneigh.mean(axis=1)
|
154 |
+
del meds, isneigh, Tneigh
|
155 |
+
T = torch.log(1.0 + T)
|
156 |
+
# gradient positions
|
157 |
+
grads = T[:, pt[[2, 1, 4, 3], :, 0], pt[[2, 1, 4, 3], :, 1]]
|
158 |
+
del pt
|
159 |
+
dy = grads[:, 0] - grads[:, 1]
|
160 |
+
dx = grads[:, 2] - grads[:, 3]
|
161 |
+
del grads
|
162 |
+
mu_torch = np.stack((dy.cpu().squeeze(), dx.cpu().squeeze()), axis=-2)
|
163 |
+
return mu_torch
|
164 |
+
|
165 |
+
|
166 |
+
def diameters(masks):
|
167 |
+
_, counts = np.unique(np.int32(masks), return_counts=True)
|
168 |
+
counts = counts[1:]
|
169 |
+
md = np.median(counts ** 0.5)
|
170 |
+
if np.isnan(md):
|
171 |
+
md = 0
|
172 |
+
md /= (np.pi ** 0.5) / 2
|
173 |
+
return md, counts ** 0.5
|
174 |
+
|
175 |
+
|
176 |
+
def masks_to_flows_gpu(masks, device=None):
|
177 |
+
if device is None:
|
178 |
+
device = torch.device("cuda")
|
179 |
+
|
180 |
+
Ly0, Lx0 = masks.shape
|
181 |
+
Ly, Lx = Ly0 + 2, Lx0 + 2
|
182 |
+
|
183 |
+
masks_padded = np.zeros((Ly, Lx), np.int64)
|
184 |
+
masks_padded[1:-1, 1:-1] = masks
|
185 |
+
|
186 |
+
# get mask pixel neighbors
|
187 |
+
y, x = np.nonzero(masks_padded)
|
188 |
+
neighborsY = np.stack((y, y - 1, y + 1, y, y, y - 1, y - 1, y + 1, y + 1), axis=0)
|
189 |
+
neighborsX = np.stack((x, x, x, x - 1, x + 1, x - 1, x + 1, x - 1, x + 1), axis=0)
|
190 |
+
neighbors = np.stack((neighborsY, neighborsX), axis=-1)
|
191 |
+
|
192 |
+
# get mask centers
|
193 |
+
slices = find_objects(masks)
|
194 |
+
|
195 |
+
centers = np.zeros((masks.max(), 2), "int")
|
196 |
+
for i, si in enumerate(slices):
|
197 |
+
if si is not None:
|
198 |
+
sr, sc = si
|
199 |
+
|
200 |
+
ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1
|
201 |
+
yi, xi = np.nonzero(masks[sr, sc] == (i + 1))
|
202 |
+
yi = yi.astype(np.int32) + 1 # add padding
|
203 |
+
xi = xi.astype(np.int32) + 1 # add padding
|
204 |
+
ymed = np.median(yi)
|
205 |
+
xmed = np.median(xi)
|
206 |
+
imin = np.argmin((xi - xmed) ** 2 + (yi - ymed) ** 2)
|
207 |
+
xmed = xi[imin]
|
208 |
+
ymed = yi[imin]
|
209 |
+
centers[i, 0] = ymed + sr.start
|
210 |
+
centers[i, 1] = xmed + sc.start
|
211 |
+
|
212 |
+
# get neighbor validator (not all neighbors are in same mask)
|
213 |
+
neighbor_masks = masks_padded[neighbors[:, :, 0], neighbors[:, :, 1]]
|
214 |
+
isneighbor = neighbor_masks == neighbor_masks[0]
|
215 |
+
ext = np.array(
|
216 |
+
[[sr.stop - sr.start + 1, sc.stop - sc.start + 1] for sr, sc in slices]
|
217 |
+
)
|
218 |
+
n_iter = 2 * (ext.sum(axis=1)).max()
|
219 |
+
# run diffusion
|
220 |
+
mu = _extend_centers_gpu(
|
221 |
+
neighbors, centers, isneighbor, Ly, Lx, n_iter=n_iter, device=device
|
222 |
+
)
|
223 |
+
|
224 |
+
# normalize
|
225 |
+
mu /= 1e-20 + (mu ** 2).sum(axis=0) ** 0.5
|
226 |
+
|
227 |
+
# put into original image
|
228 |
+
mu0 = np.zeros((2, Ly0, Lx0))
|
229 |
+
mu0[:, y - 1, x - 1] = mu
|
230 |
+
mu_c = np.zeros_like(mu0)
|
231 |
+
return mu0, mu_c
|
232 |
+
|
233 |
+
|
234 |
+
def masks_to_flows(masks, use_gpu=False, device=None):
|
235 |
+
if masks.max() == 0 or (masks != 0).sum() == 1:
|
236 |
+
# dynamics_logger.warning('empty masks!')
|
237 |
+
return np.zeros((2, *masks.shape), "float32")
|
238 |
+
|
239 |
+
if use_gpu:
|
240 |
+
if use_gpu and device is None:
|
241 |
+
device = torch_GPU
|
242 |
+
elif device is None:
|
243 |
+
device = torch_CPU
|
244 |
+
masks_to_flows_device = masks_to_flows_gpu
|
245 |
+
|
246 |
+
if masks.ndim == 3:
|
247 |
+
Lz, Ly, Lx = masks.shape
|
248 |
+
mu = np.zeros((3, Lz, Ly, Lx), np.float32)
|
249 |
+
for z in range(Lz):
|
250 |
+
mu0 = masks_to_flows_device(masks[z], device=device)[0]
|
251 |
+
mu[[1, 2], z] += mu0
|
252 |
+
for y in range(Ly):
|
253 |
+
mu0 = masks_to_flows_device(masks[:, y], device=device)[0]
|
254 |
+
mu[[0, 2], :, y] += mu0
|
255 |
+
for x in range(Lx):
|
256 |
+
mu0 = masks_to_flows_device(masks[:, :, x], device=device)[0]
|
257 |
+
mu[[0, 1], :, :, x] += mu0
|
258 |
+
return mu
|
259 |
+
elif masks.ndim == 2:
|
260 |
+
mu, mu_c = masks_to_flows_device(masks, device=device)
|
261 |
+
return mu
|
262 |
+
|
263 |
+
else:
|
264 |
+
raise ValueError("masks_to_flows only takes 2D or 3D arrays")
|
265 |
+
|
266 |
+
|
267 |
+
def steps2D_interp(p, dP, niter, use_gpu=False, device=None):
|
268 |
+
shape = dP.shape[1:]
|
269 |
+
if use_gpu:
|
270 |
+
if device is None:
|
271 |
+
device = torch_GPU
|
272 |
+
shape = (
|
273 |
+
np.array(shape)[[1, 0]].astype("float") - 1
|
274 |
+
) # Y and X dimensions (dP is 2.Ly.Lx), flipped X-1, Y-1
|
275 |
+
pt = (
|
276 |
+
torch.from_numpy(p[[1, 0]].T).float().to(device).unsqueeze(0).unsqueeze(0)
|
277 |
+
) # p is n_points by 2, so pt is [1 1 2 n_points]
|
278 |
+
im = (
|
279 |
+
torch.from_numpy(dP[[1, 0]]).float().to(device).unsqueeze(0)
|
280 |
+
) # covert flow numpy array to tensor on GPU, add dimension
|
281 |
+
# normalize pt between 0 and 1, normalize the flow
|
282 |
+
for k in range(2):
|
283 |
+
im[:, k, :, :] *= 2.0 / shape[k]
|
284 |
+
pt[:, :, :, k] /= shape[k]
|
285 |
+
|
286 |
+
# normalize to between -1 and 1
|
287 |
+
pt = pt * 2 - 1
|
288 |
+
|
289 |
+
# here is where the stepping happens
|
290 |
+
for t in range(niter):
|
291 |
+
# align_corners default is False, just added to suppress warning
|
292 |
+
dPt = grid_sample(im, pt, align_corners=False)
|
293 |
+
|
294 |
+
for k in range(2): # clamp the final pixel locations
|
295 |
+
pt[:, :, :, k] = torch.clamp(
|
296 |
+
pt[:, :, :, k] + dPt[:, k, :, :], -1.0, 1.0
|
297 |
+
)
|
298 |
+
|
299 |
+
# undo the normalization from before, reverse order of operations
|
300 |
+
pt = (pt + 1) * 0.5
|
301 |
+
for k in range(2):
|
302 |
+
pt[:, :, :, k] *= shape[k]
|
303 |
+
|
304 |
+
p = pt[:, :, :, [1, 0]].cpu().numpy().squeeze().T
|
305 |
+
return p
|
306 |
+
|
307 |
+
else:
|
308 |
+
assert print("ho")
|
309 |
+
|
310 |
+
|
311 |
+
def follow_flows(dP, mask=None, niter=200, interp=True, use_gpu=True, device=None):
|
312 |
+
shape = np.array(dP.shape[1:]).astype(np.int32)
|
313 |
+
niter = np.uint32(niter)
|
314 |
+
|
315 |
+
p = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij")
|
316 |
+
p = np.array(p).astype(np.float32)
|
317 |
+
|
318 |
+
inds = np.array(np.nonzero(np.abs(dP[0]) > 1e-3)).astype(np.int32).T
|
319 |
+
|
320 |
+
if inds.ndim < 2 or inds.shape[0] < 5:
|
321 |
+
return p, None
|
322 |
+
|
323 |
+
if not interp:
|
324 |
+
assert print("woo")
|
325 |
+
|
326 |
+
else:
|
327 |
+
p_interp = steps2D_interp(
|
328 |
+
p[:, inds[:, 0], inds[:, 1]], dP, niter, use_gpu=use_gpu, device=device
|
329 |
+
)
|
330 |
+
p[:, inds[:, 0], inds[:, 1]] = p_interp
|
331 |
+
|
332 |
+
return p, inds
|
333 |
+
|
334 |
+
|
335 |
+
def flow_error(maski, dP_net, use_gpu=False, device=None):
|
336 |
+
if dP_net.shape[1:] != maski.shape:
|
337 |
+
print("ERROR: net flow is not same size as predicted masks")
|
338 |
+
return
|
339 |
+
|
340 |
+
# flows predicted from estimated masks
|
341 |
+
dP_masks = masks_to_flows(maski, use_gpu=use_gpu, device=device)
|
342 |
+
# difference between predicted flows vs mask flows
|
343 |
+
flow_errors = np.zeros(maski.max())
|
344 |
+
for i in range(dP_masks.shape[0]):
|
345 |
+
flow_errors += mean(
|
346 |
+
(dP_masks[i] - dP_net[i] / 5.0) ** 2,
|
347 |
+
maski,
|
348 |
+
index=np.arange(1, maski.max() + 1),
|
349 |
+
)
|
350 |
+
|
351 |
+
return flow_errors, dP_masks
|
352 |
+
|
353 |
+
|
354 |
+
def remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None):
|
355 |
+
merrors, _ = flow_error(masks, flows, use_gpu, device)
|
356 |
+
badi = 1 + (merrors > threshold).nonzero()[0]
|
357 |
+
masks[np.isin(masks, badi)] = 0
|
358 |
+
return masks
|
359 |
+
|
360 |
+
|
361 |
+
def get_masks(p, iscell=None, rpad=20):
|
362 |
+
pflows = []
|
363 |
+
edges = []
|
364 |
+
shape0 = p.shape[1:]
|
365 |
+
dims = len(p)
|
366 |
+
|
367 |
+
for i in range(dims):
|
368 |
+
pflows.append(p[i].flatten().astype("int32"))
|
369 |
+
edges.append(np.arange(-0.5 - rpad, shape0[i] + 0.5 + rpad, 1))
|
370 |
+
|
371 |
+
h, _ = np.histogramdd(tuple(pflows), bins=edges)
|
372 |
+
hmax = h.copy()
|
373 |
+
for i in range(dims):
|
374 |
+
hmax = maximum_filter1d(hmax, 5, axis=i)
|
375 |
+
|
376 |
+
seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10))
|
377 |
+
Nmax = h[seeds]
|
378 |
+
isort = np.argsort(Nmax)[::-1]
|
379 |
+
for s in seeds:
|
380 |
+
s = s[isort]
|
381 |
+
|
382 |
+
pix = list(np.array(seeds).T)
|
383 |
+
|
384 |
+
shape = h.shape
|
385 |
+
if dims == 3:
|
386 |
+
expand = np.nonzero(np.ones((3, 3, 3)))
|
387 |
+
else:
|
388 |
+
expand = np.nonzero(np.ones((3, 3)))
|
389 |
+
for e in expand:
|
390 |
+
e = np.expand_dims(e, 1)
|
391 |
+
|
392 |
+
for iter in range(5):
|
393 |
+
for k in range(len(pix)):
|
394 |
+
if iter == 0:
|
395 |
+
pix[k] = list(pix[k])
|
396 |
+
newpix = []
|
397 |
+
iin = []
|
398 |
+
for i, e in enumerate(expand):
|
399 |
+
epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1
|
400 |
+
epix = epix.flatten()
|
401 |
+
iin.append(np.logical_and(epix >= 0, epix < shape[i]))
|
402 |
+
newpix.append(epix)
|
403 |
+
iin = np.all(tuple(iin), axis=0)
|
404 |
+
for p in newpix:
|
405 |
+
p = p[iin]
|
406 |
+
newpix = tuple(newpix)
|
407 |
+
igood = h[newpix] > 2
|
408 |
+
for i in range(dims):
|
409 |
+
pix[k][i] = newpix[i][igood]
|
410 |
+
if iter == 4:
|
411 |
+
pix[k] = tuple(pix[k])
|
412 |
+
|
413 |
+
M = np.zeros(h.shape, np.uint32)
|
414 |
+
for k in range(len(pix)):
|
415 |
+
M[pix[k]] = 1 + k
|
416 |
+
|
417 |
+
for i in range(dims):
|
418 |
+
pflows[i] = pflows[i] + rpad
|
419 |
+
M0 = M[tuple(pflows)]
|
420 |
+
|
421 |
+
# remove big masks
|
422 |
+
uniq, counts = fastremap.unique(M0, return_counts=True)
|
423 |
+
big = np.prod(shape0) * 0.9
|
424 |
+
bigc = uniq[counts > big]
|
425 |
+
if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
|
426 |
+
M0 = fastremap.mask(M0, bigc)
|
427 |
+
fastremap.renumber(M0, in_place=True) # convenient to guarantee non-skipped labels
|
428 |
+
M0 = np.reshape(M0, shape0)
|
429 |
+
return M0
|