Spaces:
Running
Running
File size: 6,746 Bytes
29ac506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import torch
import numpy as np
import os, sys
from monai.inferers import sliding_window_inference
sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), "../../")))
from BasePredictor import BasePredictor
from utils import compute_masks
__all__ = ["Predictor"]
class Predictor(BasePredictor):
def __init__(
self,
model,
device,
input_path,
output_path,
make_submission=False,
exp_name=None,
algo_params=None,
):
super(Predictor, self).__init__(
model,
device,
input_path,
output_path,
make_submission,
exp_name,
algo_params,
)
self.hflip_tta = HorizontalFlip()
self.vflip_tta = VerticalFlip()
@torch.no_grad()
def _inference(self, img_data):
"""Conduct model prediction"""
img_data = img_data.to(self.device)
img_base = img_data
outputs_base = self._window_inference(img_base)
outputs_base = outputs_base.cpu().squeeze()
img_base.cpu()
if not self.use_tta:
pred_mask = outputs_base
return pred_mask
else:
# HorizontalFlip TTA
img_hflip = self.hflip_tta.apply_aug_image(img_data, apply=True)
outputs_hflip = self._window_inference(img_hflip)
outputs_hflip = self.hflip_tta.apply_deaug_mask(outputs_hflip, apply=True)
outputs_hflip = outputs_hflip.cpu().squeeze()
img_hflip = img_hflip.cpu()
# VertricalFlip TTA
img_vflip = self.vflip_tta.apply_aug_image(img_data, apply=True)
outputs_vflip = self._window_inference(img_vflip)
outputs_vflip = self.vflip_tta.apply_deaug_mask(outputs_vflip, apply=True)
outputs_vflip = outputs_vflip.cpu().squeeze()
img_vflip = img_vflip.cpu()
# Merge Results
pred_mask = torch.zeros_like(outputs_base)
pred_mask[0] = (outputs_base[0] + outputs_hflip[0] - outputs_vflip[0]) / 3
pred_mask[1] = (outputs_base[1] - outputs_hflip[1] + outputs_vflip[1]) / 3
pred_mask[2] = (outputs_base[2] + outputs_hflip[2] + outputs_vflip[2]) / 3
return pred_mask
def _window_inference(self, img_data, aux=False):
"""Inference on RoI-sized window"""
outputs = sliding_window_inference(
img_data,
roi_size=512,
sw_batch_size=4,
predictor=self.model if not aux else self.model_aux,
padding_mode="constant",
mode="gaussian",
overlap=0.6,
)
return outputs
def _post_process(self, pred_mask):
"""Generate cell instance masks."""
dP, cellprob = pred_mask[:2], self._sigmoid(pred_mask[-1])
H, W = pred_mask.shape[-2], pred_mask.shape[-1]
if np.prod(H * W) < (5000 * 5000):
pred_mask = compute_masks(
dP,
cellprob,
use_gpu=True,
flow_threshold=0.4,
device=self.device,
cellprob_threshold=0.5,
)[0]
else:
print("\n[Whole Slide] Grid Prediction starting...")
roi_size = 2000
# Get patch grid by roi_size
if H % roi_size != 0:
n_H = H // roi_size + 1
new_H = roi_size * n_H
else:
n_H = H // roi_size
new_H = H
if W % roi_size != 0:
n_W = W // roi_size + 1
new_W = roi_size * n_W
else:
n_W = W // roi_size
new_W = W
# Allocate values on the grid
pred_pad = np.zeros((new_H, new_W), dtype=np.uint32)
dP_pad = np.zeros((2, new_H, new_W), dtype=np.float32)
cellprob_pad = np.zeros((new_H, new_W), dtype=np.float32)
dP_pad[:, :H, :W], cellprob_pad[:H, :W] = dP, cellprob
for i in range(n_H):
for j in range(n_W):
print("Pred on Grid (%d, %d) processing..." % (i, j))
dP_roi = dP_pad[
:,
roi_size * i : roi_size * (i + 1),
roi_size * j : roi_size * (j + 1),
]
cellprob_roi = cellprob_pad[
roi_size * i : roi_size * (i + 1),
roi_size * j : roi_size * (j + 1),
]
pred_mask = compute_masks(
dP_roi,
cellprob_roi,
use_gpu=True,
flow_threshold=0.4,
device=self.device,
cellprob_threshold=0.5,
)[0]
pred_pad[
roi_size * i : roi_size * (i + 1),
roi_size * j : roi_size * (j + 1),
] = pred_mask
pred_mask = pred_pad[:H, :W]
return pred_mask
def _sigmoid(self, z):
return 1 / (1 + np.exp(-z))
"""
Adapted from the following references:
[1] https://github.com/qubvel/ttach/blob/master/ttach/transforms.py
"""
def hflip(x):
"""flip batch of images horizontally"""
return x.flip(3)
def vflip(x):
"""flip batch of images vertically"""
return x.flip(2)
class DualTransform:
identity_param = None
def __init__(
self, name: str, params,
):
self.params = params
self.pname = name
def apply_aug_image(self, image, *args, **params):
raise NotImplementedError
def apply_deaug_mask(self, mask, *args, **params):
raise NotImplementedError
class HorizontalFlip(DualTransform):
"""Flip images horizontally (left -> right)"""
identity_param = False
def __init__(self):
super().__init__("apply", [False, True])
def apply_aug_image(self, image, apply=False, **kwargs):
if apply:
image = hflip(image)
return image
def apply_deaug_mask(self, mask, apply=False, **kwargs):
if apply:
mask = hflip(mask)
return mask
class VerticalFlip(DualTransform):
"""Flip images vertically (up -> down)"""
identity_param = False
def __init__(self):
super().__init__("apply", [False, True])
def apply_aug_image(self, image, apply=False, **kwargs):
if apply:
image = vflip(image)
return image
def apply_deaug_mask(self, mask, apply=False, **kwargs):
if apply:
mask = vflip(mask)
return mask
|