File size: 17,644 Bytes
8fb710a 25c6871 8fb710a 25c6871 8fb710a 25c6871 8fb710a 42d0735 8fb710a 94d9dc4 0215a4d 94d9dc4 0215a4d 6ac130b 0215a4d 8fb710a 0215a4d 8fb710a 0215a4d 8fb710a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import streamlit as st
import pandas as pd
import google.generativeai as genai
import whisper
import torch
import re
import numpy as np
import tempfile
import os
import json
from pathlib import Path
from moviepy import VideoFileClip
from pyannote.audio import Pipeline
# Ensure necessary imports are included
import time
import ffmpeg
# MediaProcessor class handles media processing (transcription and diarization)
class MediaProcessor:
def __init__(self, auth_token: str):
"""
Initialize with HuggingFace auth token for speaker diarization
"""
# Load Whisper model
self.whisper_model = whisper.load_model("medium")
# Initialize PyAnnote speaker diarization pipeline
self.diarization_pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.0",
use_auth_token=auth_token
)
self.supported_formats = {
'audio': ['.mp3', '.wav', '.m4a', '.ogg', '.flac'],
'video': ['.mp4', '.avi', '.mov', '.mkv', '.webm']
}
def process_media(self, file, progress_bar=None) -> pd.DataFrame:
"""Process audio or video file and return transcript DataFrame"""
file_ext = Path(file.name).suffix.lower()
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir) / file.name
# Save uploaded file
with open(temp_path, 'wb') as f:
f.write(file.getvalue())
# Convert video to audio if necessary
if file_ext in self.supported_formats['video']:
audio_path = self._extract_audio_from_video(temp_path)
else:
audio_path = temp_path
# Process audio
return self._process_audio_file(audio_path, progress_bar)
def _extract_audio_from_video(self, video_path: Path) -> Path:
"""Extract audio from video file"""
audio_path = video_path.with_suffix('.wav')
video = VideoFileClip(str(video_path))
video.audio.write_audiofile(str(audio_path))
video.close()
return audio_path
def _process_audio_file(self, audio_path: Path, progress_bar) -> pd.DataFrame:
"""
Process audio file with transcription and diarization
Returns DataFrame with speaker-separated transcript
"""
if progress_bar:
progress_bar.progress(0.1)
progress_bar.text("Transcribing audio...")
# Transcribe audio using Whisper
transcription = self.whisper_model.transcribe(str(audio_path))
if progress_bar:
progress_bar.progress(0.5)
progress_bar.text("Performing speaker diarization...")
# Perform speaker diarization
diarization = self.diarization_pipeline(str(audio_path))
if progress_bar:
progress_bar.progress(0.8)
progress_bar.text("Aligning transcription with speakers...")
# Align transcription with speaker segments
transcript_data = self._align_transcript_with_speakers(
transcription, diarization
)
if progress_bar:
progress_bar.progress(1.0)
progress_bar.text("Processing complete!")
return pd.DataFrame(transcript_data)
def _align_transcript_with_speakers(self, transcription, diarization):
"""
Align transcription with speaker segments
Returns list of dicts with aligned data
"""
# Prepare a list to hold the aligned segments
segments = []
# Iterate over diarization segments
for segment in diarization.itersegments():
speaker = diarization[segment]
# Find corresponding text from transcription
text = self._find_text_in_timerange(
transcription['segments'],
segment.start,
segment.end
)
if text:
segments.append({
'P or C': 'P' if speaker == 'SPEAKER_00' else 'C',
'Content of Utterance': text,
'Start Time': segment.start,
'End Time': segment.end,
'Speaker': speaker
})
return segments
@staticmethod
def _find_text_in_timerange(segments, start_time, end_time):
"""Find transcribed text within a time range"""
relevant_segments = [
seg['text'] for seg in segments
if (seg['start'] >= start_time and seg['end'] <= end_time)
]
return ' '.join(relevant_segments).strip()
# MITIAnalyzer class handles analysis and scoring using Google Gemini API
class MITIAnalyzer:
def __init__(self, api_key):
# Set the API key for Google Gemini
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel('gemini-1.5-flash')
self.global_scores = {
"cultivating_change": None,
"softening_sustain-talk": None,
"partnership": None,
"empathy": None
}
self.behavior_counts = {
"gi": 0, # Giving Information
"persuade": 0,
"persuade_with": 0, # Persuade with Permission
"question": 0,
"sr": 0, # Simple Reflection
"cr": 0, # Complex Reflection
"affirm": 0,
"seek": 0, # Seeking Collaboration
"emphasize": 0, # Emphasizing Autonomy
"confront": 0
}
def extract_score(self, response_text):
"""Extract numerical score from Gemini API response"""
# Look for patterns like "Score: X" or "I would rate this as X"
score_patterns = [
r"score.*?([1-5])",
r"rate.*?([1-5])",
r"([1-5]).*?out of 5"
]
for pattern in score_patterns:
match = re.search(pattern, response_text.lower())
if match:
return int(match.group(1))
return None
def analyze_transcript(self, transcript_df):
"""Analyze transcript and generate all MITI scores"""
# Analyze global scores
model = genai.GenerativeModel('gemini-1.5-flash')
generation_config = genai.GenerationConfig(max_output_tokens=2048)
for dimension in self.global_scores.keys():
prompt = self.load_prompt(f"prompts/prompts/prompts_prompts_0{list(self.global_scores.keys()).index(dimension)+1}-MITI-global-{dimension.replace('_', '-')}.md")
full_prompt = f"{prompt}\n\n<transcript>\n{transcript_df.to_csv(index=False)}\n</transcript>"
response = model.generate_content(
full_prompt,
generation_config=generation_config
)
score = self.extract_score(response.text)
self.global_scores[dimension] = score
# Analyze behavior counts
self.count_behaviors(transcript_df)
def count_behaviors(self, transcript_df):
"""Count specific behaviors in transcript"""
model = genai.GenerativeModel('gemini-1.5-flash')
generation_config = genai.GenerationConfig(max_output_tokens=2048)
# Create behavior detection prompt
behavior_prompt = """
You are an expert in Motivational Interviewing. Analyze the following therapist utterance and identify any of these behaviors:
- Giving Information (GI)
- Persuade
- Persuade with Permission
- Question (Q)
- Simple Reflection (SR)
- Complex Reflection (CR)
- Affirm (AF)
- Seeking Collaboration (Seek)
- Emphasizing Autonomy (Emphasize)
- Confront
Return results in JSON format, e.g., {"GI":1, "Persuade":0, ...}
"""
for _, row in transcript_df.iterrows():
if row['P or C'] == 'P': # Provider/Therapist utterance
behavior_full_prompt = f"{behavior_prompt}\n\nUtterance: {row['Content of Utterance']}"
response = model.generate_content(
behavior_full_prompt,
generation_config=generation_config
)
try:
# Extract JSON from response
behaviors = json.loads(response.text)
for behavior, count in behaviors.items():
key = behavior.lower().replace(" ", "_")
if key in self.behavior_counts:
self.behavior_counts[key] += count
except Exception as e:
st.warning(f"Could not parse behaviors for utterance: {row['Content of Utterance']}\nError: {e}")
def calculate_summary_scores(self):
"""Calculate MITI summary scores"""
summary = {}
# Technical Global
if all(self.global_scores[s] is not None for s in ['cultivating_change', 'softening_sustain-talk']):
summary['technical'] = (self.global_scores['cultivating_change'] +
self.global_scores['softening_sustain-talk']) / 2
# Relational Global
if all(self.global_scores[s] is not None for s in ['partnership', 'empathy']):
summary['relational'] = (self.global_scores['partnership'] +
self.global_scores['empathy']) / 2
# % Complex Reflections
total_reflections = self.behavior_counts['sr'] + self.behavior_counts['cr']
if total_reflections > 0:
summary['pct_cr'] = (self.behavior_counts['cr'] / total_reflections) * 100
# Reflection-to-Question Ratio
if self.behavior_counts['question'] > 0:
summary['r_to_q'] = total_reflections / self.behavior_counts['question']
# Total MI-Adherent
summary['total_mia'] = (self.behavior_counts['seek'] +
self.behavior_counts['affirm'] +
self.behavior_counts['emphasize'])
# Total MI Non-Adherent
summary['total_mina'] = (self.behavior_counts['confront'] +
self.behavior_counts['persuade'])
return summary
def convert_excerpt(self, text):
"""Convert text excerpt input into revised behavioral code"""
model = genai.GenerativeModel('models/gemini-2.0-flash-thinking-exp')
prompt = self.load_prompt(f"prompts/prompts/miti_convert.md")
response = model.generate_content(
prompt + '\n' + text
)
return response.text
@staticmethod
def load_prompt(filename):
"""Load prompt from file"""
try:
with open(filename, 'r') as f:
return f.read()
except Exception as e:
st.error(f"Could not load prompt file: {filename}\nError: {e}")
return ""
def render_miti_results(analyzer):
"""Render MITI results in Streamlit"""
st.header("MITI Evaluation Results")
# Global Scores
st.subheader("Global Scores")
global_scores_df = pd.DataFrame(analyzer.global_scores.items(), columns=['Dimension', 'Score'])
st.table(global_scores_df)
# Behavior Counts
st.subheader("Behavior Counts")
counts_df = pd.DataFrame(analyzer.behavior_counts.items(), columns=['Behavior', 'Count'])
st.table(counts_df)
# Summary Scores
st.subheader("Summary Scores")
summary = analyzer.calculate_summary_scores()
summary_items = summary.items()
if summary_items:
summary_df = pd.DataFrame(summary_items, columns=['Metric', 'Value'])
st.table(summary_df)
else:
st.write("No summary scores available.")
def export_results(analyzer, export_format):
"""Export results in specified format"""
results = {
'global_scores': analyzer.global_scores,
'behavior_counts': analyzer.behavior_counts,
'summary_scores': analyzer.calculate_summary_scores()
}
if export_format == "JSON":
return json.dumps(results, indent=2)
elif export_format == "CSV":
# Convert results to CSV format
all_results = {**analyzer.global_scores, **analyzer.behavior_counts, **analyzer.calculate_summary_scores()}
df = pd.DataFrame(list(all_results.items()), columns=['Metric', 'Value'])
return df.to_csv(index=False)
elif export_format == "TXT":
# Plain text format
output = ""
output += "Global Scores:\n"
for k, v in analyzer.global_scores.items():
output += f"{k}: {v}\n"
output += "\nBehavior Counts:\n"
for k, v in analyzer.behavior_counts.items():
output += f"{k}: {v}\n"
output += "\nSummary Scores:\n"
for k, v in analyzer.calculate_summary_scores().items():
output += f"{k}: {v}\n"
return output
def main():
st.title("MITI Session Analyzer")
# Hide Streamlit's default hamburger menu
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Initialize processors
if 'media_processor' not in st.session_state:
if "HF_AUTH_TOKEN" not in st.secrets:
st.error("Hugging Face Auth Token not found. Please add it to Streamlit secrets.")
return
st.session_state.media_processor = MediaProcessor(
auth_token=st.secrets["HF_AUTH_TOKEN"]
)
if 'miti_analyzer' not in st.session_state:
if "GEMINI_API_KEY" not in st.secrets:
st.error("Gemini API Key not found. Please add it to Streamlit secrets.")
return
st.session_state.miti_analyzer = MITIAnalyzer(
api_key=st.secrets["GEMINI_API_KEY"]
)
# File upload section
st.subheader("Upload Session Recording or Transcript")
file_type = st.radio(
"Select input type:",
["Audio/Video Recording", "Text Transcript", "Text Excerpt Conversion"]
)
if file_type == "Text Excerpt Conversion":
txt = st.text_area("Excerpt to analyze")
if st.button("Run"):
st.markdown(st.session_state.miti_analyzer.convert_excerpt(txt))
if file_type == "Audio/Video Recording":
supported_formats = (
st.session_state.media_processor.supported_formats['audio'] +
st.session_state.media_processor.supported_formats['video']
)
uploaded_file = st.file_uploader(
"Upload recording",
type=[fmt[1:] for fmt in supported_formats]
)
if uploaded_file:
progress_bar = st.progress(0)
with st.spinner("Processing media file..."):
try:
transcript_df = st.session_state.media_processor.process_media(
uploaded_file,
progress_bar
)
st.session_state.transcript_df = transcript_df
# Display transcript
st.subheader("Generated Transcript")
st.dataframe(transcript_df)
# Allow transcript editing
if st.checkbox("Edit Transcript"):
st.session_state.transcript_df = st.data_editor(
transcript_df,
num_rows="dynamic"
)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else: # Text Transcript
uploaded_file = st.file_uploader(
"Upload transcript (CSV format)",
type=['csv']
)
if uploaded_file:
try:
transcript_df = pd.read_csv(uploaded_file)
st.session_state.transcript_df = transcript_df
st.subheader("Transcript")
st.dataframe(transcript_df)
# Allow transcript editing
if st.checkbox("Edit Transcript"):
st.session_state.transcript_df = st.data_editor(
transcript_df,
num_rows="dynamic"
)
except Exception as e:
st.error(f"Error reading transcript: {str(e)}")
# Analysis section
if 'transcript_df' in st.session_state:
st.subheader("MITI Analysis")
if st.button("Generate MITI Ratings"):
with st.spinner("Analyzing session..."):
st.session_state.miti_analyzer.analyze_transcript(
st.session_state.transcript_df
)
render_miti_results(st.session_state.miti_analyzer)
# Save results
st.session_state.last_results = st.session_state.miti_analyzer
# Export options
if 'last_results' in st.session_state:
st.subheader("Export Analysis Report")
export_format = st.selectbox(
"Select export format",
["JSON", "CSV", "TXT"]
)
if st.button("Download Report"):
report_data = export_results(
st.session_state.last_results,
export_format
)
file_extension = export_format.lower()
st.download_button(
label="Download Report",
data=report_data,
file_name=f"miti_analysis.{file_extension}",
mime=f"text/{file_extension}" if export_format != 'JSON' else 'application/json'
)
if __name__ == "__main__":
main()
|