Upload 3 files
Browse files- README (1).md +12 -0
- app (2).py +457 -0
- requirements (1).txt +9 -0
README (1).md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Motivational Interviewing Gemini
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.41.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app (2).py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import google.generativeai as genai
|
4 |
+
import whisper
|
5 |
+
import torch
|
6 |
+
import re
|
7 |
+
import numpy as np
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
import json
|
11 |
+
from pathlib import Path
|
12 |
+
from moviepy import VideoFileClip
|
13 |
+
from pyannote.audio import Pipeline
|
14 |
+
|
15 |
+
# Ensure necessary imports are included
|
16 |
+
import time
|
17 |
+
import ffmpeg
|
18 |
+
|
19 |
+
# MediaProcessor class handles media processing (transcription and diarization)
|
20 |
+
class MediaProcessor:
|
21 |
+
def __init__(self, auth_token: str):
|
22 |
+
"""
|
23 |
+
Initialize with HuggingFace auth token for speaker diarization
|
24 |
+
"""
|
25 |
+
# Load Whisper model
|
26 |
+
self.whisper_model = whisper.load_model("medium")
|
27 |
+
# Initialize PyAnnote speaker diarization pipeline
|
28 |
+
self.diarization_pipeline = Pipeline.from_pretrained(
|
29 |
+
"pyannote/speaker-diarization-3.0",
|
30 |
+
use_auth_token=auth_token
|
31 |
+
)
|
32 |
+
self.supported_formats = {
|
33 |
+
'audio': ['.mp3', '.wav', '.m4a', '.ogg', '.flac'],
|
34 |
+
'video': ['.mp4', '.avi', '.mov', '.mkv', '.webm']
|
35 |
+
}
|
36 |
+
|
37 |
+
def process_media(self, file, progress_bar=None) -> pd.DataFrame:
|
38 |
+
"""Process audio or video file and return transcript DataFrame"""
|
39 |
+
file_ext = Path(file.name).suffix.lower()
|
40 |
+
|
41 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
42 |
+
temp_path = Path(temp_dir) / file.name
|
43 |
+
|
44 |
+
# Save uploaded file
|
45 |
+
with open(temp_path, 'wb') as f:
|
46 |
+
f.write(file.getvalue())
|
47 |
+
|
48 |
+
# Convert video to audio if necessary
|
49 |
+
if file_ext in self.supported_formats['video']:
|
50 |
+
audio_path = self._extract_audio_from_video(temp_path)
|
51 |
+
else:
|
52 |
+
audio_path = temp_path
|
53 |
+
|
54 |
+
# Process audio
|
55 |
+
return self._process_audio_file(audio_path, progress_bar)
|
56 |
+
|
57 |
+
def _extract_audio_from_video(self, video_path: Path) -> Path:
|
58 |
+
"""Extract audio from video file"""
|
59 |
+
audio_path = video_path.with_suffix('.wav')
|
60 |
+
video = VideoFileClip(str(video_path))
|
61 |
+
video.audio.write_audiofile(str(audio_path))
|
62 |
+
video.close()
|
63 |
+
return audio_path
|
64 |
+
|
65 |
+
def _process_audio_file(self, audio_path: Path, progress_bar) -> pd.DataFrame:
|
66 |
+
"""
|
67 |
+
Process audio file with transcription and diarization
|
68 |
+
Returns DataFrame with speaker-separated transcript
|
69 |
+
"""
|
70 |
+
if progress_bar:
|
71 |
+
progress_bar.progress(0.1)
|
72 |
+
progress_bar.text("Transcribing audio...")
|
73 |
+
|
74 |
+
# Transcribe audio using Whisper
|
75 |
+
transcription = self.whisper_model.transcribe(str(audio_path))
|
76 |
+
|
77 |
+
if progress_bar:
|
78 |
+
progress_bar.progress(0.5)
|
79 |
+
progress_bar.text("Performing speaker diarization...")
|
80 |
+
|
81 |
+
# Perform speaker diarization
|
82 |
+
diarization = self.diarization_pipeline(str(audio_path))
|
83 |
+
|
84 |
+
if progress_bar:
|
85 |
+
progress_bar.progress(0.8)
|
86 |
+
progress_bar.text("Aligning transcription with speakers...")
|
87 |
+
|
88 |
+
# Align transcription with speaker segments
|
89 |
+
transcript_data = self._align_transcript_with_speakers(
|
90 |
+
transcription, diarization
|
91 |
+
)
|
92 |
+
|
93 |
+
if progress_bar:
|
94 |
+
progress_bar.progress(1.0)
|
95 |
+
progress_bar.text("Processing complete!")
|
96 |
+
|
97 |
+
return pd.DataFrame(transcript_data)
|
98 |
+
|
99 |
+
def _align_transcript_with_speakers(self, transcription, diarization):
|
100 |
+
"""
|
101 |
+
Align transcription with speaker segments
|
102 |
+
Returns list of dicts with aligned data
|
103 |
+
"""
|
104 |
+
# Prepare a list to hold the aligned segments
|
105 |
+
segments = []
|
106 |
+
# Iterate over diarization segments
|
107 |
+
for segment in diarization.itersegments():
|
108 |
+
speaker = diarization[segment]
|
109 |
+
# Find corresponding text from transcription
|
110 |
+
text = self._find_text_in_timerange(
|
111 |
+
transcription['segments'],
|
112 |
+
segment.start,
|
113 |
+
segment.end
|
114 |
+
)
|
115 |
+
if text:
|
116 |
+
segments.append({
|
117 |
+
'P or C': 'P' if speaker == 'SPEAKER_00' else 'C',
|
118 |
+
'Content of Utterance': text,
|
119 |
+
'Start Time': segment.start,
|
120 |
+
'End Time': segment.end,
|
121 |
+
'Speaker': speaker
|
122 |
+
})
|
123 |
+
return segments
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def _find_text_in_timerange(segments, start_time, end_time):
|
127 |
+
"""Find transcribed text within a time range"""
|
128 |
+
relevant_segments = [
|
129 |
+
seg['text'] for seg in segments
|
130 |
+
if (seg['start'] >= start_time and seg['end'] <= end_time)
|
131 |
+
]
|
132 |
+
return ' '.join(relevant_segments).strip()
|
133 |
+
|
134 |
+
# MITIAnalyzer class handles analysis and scoring using Google Gemini API
|
135 |
+
class MITIAnalyzer:
|
136 |
+
def __init__(self, api_key):
|
137 |
+
# Set the API key for Google Gemini
|
138 |
+
genai.configure(api_key=api_key)
|
139 |
+
self.global_scores = {
|
140 |
+
"cultivating_change": None,
|
141 |
+
"softening_sustain-talk": None,
|
142 |
+
"partnership": None,
|
143 |
+
"empathy": None
|
144 |
+
}
|
145 |
+
self.behavior_counts = {
|
146 |
+
"gi": 0, # Giving Information
|
147 |
+
"persuade": 0,
|
148 |
+
"persuade_with": 0, # Persuade with Permission
|
149 |
+
"question": 0,
|
150 |
+
"sr": 0, # Simple Reflection
|
151 |
+
"cr": 0, # Complex Reflection
|
152 |
+
"affirm": 0,
|
153 |
+
"seek": 0, # Seeking Collaboration
|
154 |
+
"emphasize": 0, # Emphasizing Autonomy
|
155 |
+
"confront": 0
|
156 |
+
}
|
157 |
+
|
158 |
+
def extract_score(self, response_text):
|
159 |
+
"""Extract numerical score from Gemini API response"""
|
160 |
+
# Look for patterns like "Score: X" or "I would rate this as X"
|
161 |
+
score_patterns = [
|
162 |
+
r"score.*?([1-5])",
|
163 |
+
r"rate.*?([1-5])",
|
164 |
+
r"([1-5]).*?out of 5"
|
165 |
+
]
|
166 |
+
|
167 |
+
for pattern in score_patterns:
|
168 |
+
match = re.search(pattern, response_text.lower())
|
169 |
+
if match:
|
170 |
+
return int(match.group(1))
|
171 |
+
return None
|
172 |
+
|
173 |
+
def analyze_transcript(self, transcript_df):
|
174 |
+
"""Analyze transcript and generate all MITI scores"""
|
175 |
+
# Analyze global scores
|
176 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
177 |
+
generation_config = genai.GenerationConfig(max_output_tokens=2048)
|
178 |
+
for dimension in self.global_scores.keys():
|
179 |
+
prompt = self.load_prompt(f"prompts/prompts/0{list(self.global_scores.keys()).index(dimension)+1}-MITI-global-{dimension.replace('_', '-')}.md")
|
180 |
+
|
181 |
+
full_prompt = f"{prompt}\n\n<transcript>\n{transcript_df.to_csv(index=False)}\n</transcript>"
|
182 |
+
|
183 |
+
response = model.generate_content(
|
184 |
+
full_prompt,
|
185 |
+
generation_config=generation_config
|
186 |
+
)
|
187 |
+
score = self.extract_score(response.text)
|
188 |
+
self.global_scores[dimension] = score
|
189 |
+
|
190 |
+
# Analyze behavior counts
|
191 |
+
self.count_behaviors(transcript_df)
|
192 |
+
|
193 |
+
def count_behaviors(self, transcript_df):
|
194 |
+
"""Count specific behaviors in transcript"""
|
195 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
196 |
+
generation_config = genai.GenerationConfig(max_output_tokens=2048)
|
197 |
+
# Create behavior detection prompt
|
198 |
+
behavior_prompt = """
|
199 |
+
You are an expert in Motivational Interviewing. Analyze the following therapist utterance and identify any of these behaviors:
|
200 |
+
- Giving Information (GI)
|
201 |
+
- Persuade
|
202 |
+
- Persuade with Permission
|
203 |
+
- Question (Q)
|
204 |
+
- Simple Reflection (SR)
|
205 |
+
- Complex Reflection (CR)
|
206 |
+
- Affirm (AF)
|
207 |
+
- Seeking Collaboration (Seek)
|
208 |
+
- Emphasizing Autonomy (Emphasize)
|
209 |
+
- Confront
|
210 |
+
|
211 |
+
Return results in JSON format, e.g., {"GI":1, "Persuade":0, ...}
|
212 |
+
"""
|
213 |
+
|
214 |
+
for _, row in transcript_df.iterrows():
|
215 |
+
if row['P or C'] == 'P': # Provider/Therapist utterance
|
216 |
+
|
217 |
+
behavior_full_prompt = f"{behavior_prompt}\n\nUtterance: {row['Content of Utterance']}"
|
218 |
+
response = model.generate_content(
|
219 |
+
behavior_full_prompt,
|
220 |
+
generation_config=generation_config
|
221 |
+
)
|
222 |
+
try:
|
223 |
+
# Extract JSON from response
|
224 |
+
behaviors = json.loads(response.text)
|
225 |
+
for behavior, count in behaviors.items():
|
226 |
+
key = behavior.lower().replace(" ", "_")
|
227 |
+
if key in self.behavior_counts:
|
228 |
+
self.behavior_counts[key] += count
|
229 |
+
except Exception as e:
|
230 |
+
st.warning(f"Could not parse behaviors for utterance: {row['Content of Utterance']}\nError: {e}")
|
231 |
+
|
232 |
+
def calculate_summary_scores(self):
|
233 |
+
"""Calculate MITI summary scores"""
|
234 |
+
summary = {}
|
235 |
+
|
236 |
+
# Technical Global
|
237 |
+
if all(self.global_scores[s] is not None for s in ['cultivating_change', 'softening_sustain-talk']):
|
238 |
+
summary['technical'] = (self.global_scores['cultivating_change'] +
|
239 |
+
self.global_scores['softening_sustain-talk']) / 2
|
240 |
+
|
241 |
+
# Relational Global
|
242 |
+
if all(self.global_scores[s] is not None for s in ['partnership', 'empathy']):
|
243 |
+
summary['relational'] = (self.global_scores['partnership'] +
|
244 |
+
self.global_scores['empathy']) / 2
|
245 |
+
|
246 |
+
# % Complex Reflections
|
247 |
+
total_reflections = self.behavior_counts['sr'] + self.behavior_counts['cr']
|
248 |
+
if total_reflections > 0:
|
249 |
+
summary['pct_cr'] = (self.behavior_counts['cr'] / total_reflections) * 100
|
250 |
+
|
251 |
+
# Reflection-to-Question Ratio
|
252 |
+
if self.behavior_counts['question'] > 0:
|
253 |
+
summary['r_to_q'] = total_reflections / self.behavior_counts['question']
|
254 |
+
|
255 |
+
# Total MI-Adherent
|
256 |
+
summary['total_mia'] = (self.behavior_counts['seek'] +
|
257 |
+
self.behavior_counts['affirm'] +
|
258 |
+
self.behavior_counts['emphasize'])
|
259 |
+
|
260 |
+
# Total MI Non-Adherent
|
261 |
+
summary['total_mina'] = (self.behavior_counts['confront'] +
|
262 |
+
self.behavior_counts['persuade'])
|
263 |
+
|
264 |
+
return summary
|
265 |
+
|
266 |
+
@staticmethod
|
267 |
+
def load_prompt(filename):
|
268 |
+
"""Load prompt from file"""
|
269 |
+
try:
|
270 |
+
with open(filename, 'r') as f:
|
271 |
+
return f.read()
|
272 |
+
except Exception as e:
|
273 |
+
st.error(f"Could not load prompt file: {filename}\nError: {e}")
|
274 |
+
return ""
|
275 |
+
|
276 |
+
def render_miti_results(analyzer):
|
277 |
+
"""Render MITI results in Streamlit"""
|
278 |
+
st.header("MITI Evaluation Results")
|
279 |
+
|
280 |
+
# Global Scores
|
281 |
+
st.subheader("Global Scores")
|
282 |
+
global_scores_df = pd.DataFrame(analyzer.global_scores.items(), columns=['Dimension', 'Score'])
|
283 |
+
st.table(global_scores_df)
|
284 |
+
|
285 |
+
# Behavior Counts
|
286 |
+
st.subheader("Behavior Counts")
|
287 |
+
counts_df = pd.DataFrame(analyzer.behavior_counts.items(), columns=['Behavior', 'Count'])
|
288 |
+
st.table(counts_df)
|
289 |
+
|
290 |
+
# Summary Scores
|
291 |
+
st.subheader("Summary Scores")
|
292 |
+
summary = analyzer.calculate_summary_scores()
|
293 |
+
summary_items = summary.items()
|
294 |
+
if summary_items:
|
295 |
+
summary_df = pd.DataFrame(summary_items, columns=['Metric', 'Value'])
|
296 |
+
st.table(summary_df)
|
297 |
+
else:
|
298 |
+
st.write("No summary scores available.")
|
299 |
+
|
300 |
+
def export_results(analyzer, export_format):
|
301 |
+
"""Export results in specified format"""
|
302 |
+
results = {
|
303 |
+
'global_scores': analyzer.global_scores,
|
304 |
+
'behavior_counts': analyzer.behavior_counts,
|
305 |
+
'summary_scores': analyzer.calculate_summary_scores()
|
306 |
+
}
|
307 |
+
if export_format == "JSON":
|
308 |
+
return json.dumps(results, indent=2)
|
309 |
+
elif export_format == "CSV":
|
310 |
+
# Convert results to CSV format
|
311 |
+
all_results = {**analyzer.global_scores, **analyzer.behavior_counts, **analyzer.calculate_summary_scores()}
|
312 |
+
df = pd.DataFrame(list(all_results.items()), columns=['Metric', 'Value'])
|
313 |
+
return df.to_csv(index=False)
|
314 |
+
elif export_format == "TXT":
|
315 |
+
# Plain text format
|
316 |
+
output = ""
|
317 |
+
output += "Global Scores:\n"
|
318 |
+
for k, v in analyzer.global_scores.items():
|
319 |
+
output += f"{k}: {v}\n"
|
320 |
+
output += "\nBehavior Counts:\n"
|
321 |
+
for k, v in analyzer.behavior_counts.items():
|
322 |
+
output += f"{k}: {v}\n"
|
323 |
+
output += "\nSummary Scores:\n"
|
324 |
+
for k, v in analyzer.calculate_summary_scores().items():
|
325 |
+
output += f"{k}: {v}\n"
|
326 |
+
return output
|
327 |
+
|
328 |
+
def main():
|
329 |
+
st.title("MITI Session Analyzer")
|
330 |
+
|
331 |
+
# Hide Streamlit's default hamburger menu
|
332 |
+
hide_streamlit_style = """
|
333 |
+
<style>
|
334 |
+
#MainMenu {visibility: hidden;}
|
335 |
+
footer {visibility: hidden;}
|
336 |
+
</style>
|
337 |
+
"""
|
338 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
339 |
+
|
340 |
+
# Initialize processors
|
341 |
+
if 'media_processor' not in st.session_state:
|
342 |
+
if "HF_AUTH_TOKEN" not in st.secrets:
|
343 |
+
st.error("Hugging Face Auth Token not found. Please add it to Streamlit secrets.")
|
344 |
+
return
|
345 |
+
st.session_state.media_processor = MediaProcessor(
|
346 |
+
auth_token=st.secrets["HF_AUTH_TOKEN"]
|
347 |
+
)
|
348 |
+
if 'miti_analyzer' not in st.session_state:
|
349 |
+
if "GEMINI_API_KEY" not in st.secrets:
|
350 |
+
st.error("Gemini API Key not found. Please add it to Streamlit secrets.")
|
351 |
+
return
|
352 |
+
st.session_state.miti_analyzer = MITIAnalyzer(
|
353 |
+
api_key=st.secrets["GEMINI_API_KEY"]
|
354 |
+
)
|
355 |
+
|
356 |
+
# File upload section
|
357 |
+
st.subheader("Upload Session Recording or Transcript")
|
358 |
+
|
359 |
+
file_type = st.radio(
|
360 |
+
"Select input type:",
|
361 |
+
["Audio/Video Recording", "Text Transcript"]
|
362 |
+
)
|
363 |
+
|
364 |
+
if file_type == "Audio/Video Recording":
|
365 |
+
supported_formats = (
|
366 |
+
st.session_state.media_processor.supported_formats['audio'] +
|
367 |
+
st.session_state.media_processor.supported_formats['video']
|
368 |
+
)
|
369 |
+
|
370 |
+
uploaded_file = st.file_uploader(
|
371 |
+
"Upload recording",
|
372 |
+
type=[fmt[1:] for fmt in supported_formats]
|
373 |
+
)
|
374 |
+
|
375 |
+
if uploaded_file:
|
376 |
+
progress_bar = st.progress(0)
|
377 |
+
with st.spinner("Processing media file..."):
|
378 |
+
try:
|
379 |
+
transcript_df = st.session_state.media_processor.process_media(
|
380 |
+
uploaded_file,
|
381 |
+
progress_bar
|
382 |
+
)
|
383 |
+
st.session_state.transcript_df = transcript_df
|
384 |
+
|
385 |
+
# Display transcript
|
386 |
+
st.subheader("Generated Transcript")
|
387 |
+
st.dataframe(transcript_df)
|
388 |
+
|
389 |
+
# Allow transcript editing
|
390 |
+
if st.checkbox("Edit Transcript"):
|
391 |
+
st.session_state.transcript_df = st.data_editor(
|
392 |
+
transcript_df,
|
393 |
+
num_rows="dynamic"
|
394 |
+
)
|
395 |
+
|
396 |
+
except Exception as e:
|
397 |
+
st.error(f"Error processing file: {str(e)}")
|
398 |
+
|
399 |
+
else: # Text Transcript
|
400 |
+
uploaded_file = st.file_uploader(
|
401 |
+
"Upload transcript (CSV format)",
|
402 |
+
type=['csv']
|
403 |
+
)
|
404 |
+
|
405 |
+
if uploaded_file:
|
406 |
+
try:
|
407 |
+
transcript_df = pd.read_csv(uploaded_file)
|
408 |
+
st.session_state.transcript_df = transcript_df
|
409 |
+
st.subheader("Transcript")
|
410 |
+
st.dataframe(transcript_df)
|
411 |
+
# Allow transcript editing
|
412 |
+
if st.checkbox("Edit Transcript"):
|
413 |
+
st.session_state.transcript_df = st.data_editor(
|
414 |
+
transcript_df,
|
415 |
+
num_rows="dynamic"
|
416 |
+
)
|
417 |
+
|
418 |
+
except Exception as e:
|
419 |
+
st.error(f"Error reading transcript: {str(e)}")
|
420 |
+
|
421 |
+
# Analysis section
|
422 |
+
if 'transcript_df' in st.session_state:
|
423 |
+
st.subheader("MITI Analysis")
|
424 |
+
|
425 |
+
if st.button("Generate MITI Ratings"):
|
426 |
+
with st.spinner("Analyzing session..."):
|
427 |
+
st.session_state.miti_analyzer.analyze_transcript(
|
428 |
+
st.session_state.transcript_df
|
429 |
+
)
|
430 |
+
render_miti_results(st.session_state.miti_analyzer)
|
431 |
+
|
432 |
+
# Save results
|
433 |
+
st.session_state.last_results = st.session_state.miti_analyzer
|
434 |
+
|
435 |
+
# Export options
|
436 |
+
if 'last_results' in st.session_state:
|
437 |
+
st.subheader("Export Analysis Report")
|
438 |
+
export_format = st.selectbox(
|
439 |
+
"Select export format",
|
440 |
+
["JSON", "CSV", "TXT"]
|
441 |
+
)
|
442 |
+
|
443 |
+
if st.button("Download Report"):
|
444 |
+
report_data = export_results(
|
445 |
+
st.session_state.last_results,
|
446 |
+
export_format
|
447 |
+
)
|
448 |
+
file_extension = export_format.lower()
|
449 |
+
st.download_button(
|
450 |
+
label="Download Report",
|
451 |
+
data=report_data,
|
452 |
+
file_name=f"miti_analysis.{file_extension}",
|
453 |
+
mime=f"text/{file_extension}" if export_format != 'JSON' else 'application/json'
|
454 |
+
)
|
455 |
+
|
456 |
+
if __name__ == "__main__":
|
457 |
+
main()
|
requirements (1).txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
google-generativeai
|
4 |
+
git+https://github.com/openai/whisper.git
|
5 |
+
torch
|
6 |
+
numpy
|
7 |
+
moviepy
|
8 |
+
pyannote.audio
|
9 |
+
ffmpeg-python
|