zhuohan-7 commited on
Commit
3a13d9d
·
1 Parent(s): c4c31dc

delete due to wrong path

Browse files
Files changed (1) hide show
  1. draw_diagram.py +0 -223
draw_diagram.py DELETED
@@ -1,223 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
- from streamlit_echarts import st_echarts
5
- from app.show_examples import *
6
- from app.content import *
7
-
8
- import pandas as pd
9
-
10
- from model_information import get_dataframe
11
- info_df = get_dataframe()
12
-
13
-
14
- def draw(folder_name, category_name, displayname, metrics, cus_sort=True):
15
-
16
- folder = f"./results_organized/{metrics}/"
17
-
18
- # Load the results from CSV
19
- data_path = f'{folder}/{category_name.lower()}.csv'
20
- chart_data = pd.read_csv(data_path).round(3)
21
-
22
- dataset_name = displayname2datasetname[displayname]
23
- chart_data = chart_data[['Model', dataset_name]]
24
-
25
- # Rename to proper display name
26
- chart_data = chart_data.rename(columns=datasetname2diaplayname)
27
-
28
- st.markdown("""
29
- <style>
30
- .stMultiSelect [data-baseweb=select] span {
31
- max-width: 800px;
32
- font-size: 0.9rem;
33
- background-color: #3C6478 !important; /* Background color for selected items */
34
- color: white; /* Change text color */
35
- back
36
- }
37
- </style>
38
- """, unsafe_allow_html=True)
39
-
40
- # remap model names
41
- display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
42
- chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
43
-
44
-
45
- models = st.multiselect("Please choose the model",
46
- sorted(chart_data['model_show'].tolist()),
47
- default = sorted(chart_data['model_show'].tolist()),
48
- )
49
-
50
- chart_data = chart_data[chart_data['model_show'].isin(models)]
51
- chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0)
52
-
53
- if len(chart_data) == 0: return
54
-
55
-
56
- # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
57
- '''
58
- Show Table
59
- '''
60
- with st.container():
61
- st.markdown('##### TABLE')
62
-
63
-
64
- model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
65
-
66
- chart_data['model_link'] = chart_data['model_show'].map(model_link)
67
-
68
- chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
69
-
70
- # Format numeric columns to 2 decimal places
71
- #chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
72
- cur_dataset_name = chart_data_table.columns[1]
73
-
74
-
75
- def highlight_first_element(x):
76
- # Create a DataFrame with the same shape as the input
77
- df_style = pd.DataFrame('', index=x.index, columns=x.columns)
78
- # Apply background color to the first element in row 0 (df[0][0])
79
- # df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white'
80
- df_style.iloc[0, 1] = 'background-color: #b0c1d7'
81
-
82
- return df_style
83
-
84
- if cur_dataset_name in [
85
- 'LibriSpeech-Clean',
86
- 'LibriSpeech-Other',
87
- 'CommonVoice-15-EN',
88
- 'Peoples-Speech',
89
- 'GigaSpeech-1',
90
- 'Earnings-21',
91
- 'Earnings-22',
92
- 'TED-LIUM-3',
93
- 'TED-LIUM-3-LongForm',
94
- 'AISHELL-ASR-ZH',
95
- 'MNSC-PART1-ASR',
96
- 'MNSC-PART2-ASR',
97
- 'MNSC-PART3-ASR',
98
- 'MNSC-PART4-ASR',
99
- 'MNSC-PART5-ASR',
100
- 'MNSC-PART6-ASR',
101
- 'CNA',
102
- 'IDPC',
103
- 'Parliament',
104
- 'UKUS-News',
105
- 'Mediacorp',
106
- 'IDPC-Short',
107
- 'Parliament-Short',
108
- 'UKUS-News-Short',
109
- 'Mediacorp-Short',
110
- 'YTB-ASR-Batch1',
111
- 'YTB-ASR-Batch2',
112
- 'SEAME-Dev-Man',
113
- 'SEAME-Dev-Sge',
114
- ]:
115
-
116
- chart_data_table = chart_data_table.sort_values(
117
- by=chart_data_table.columns[1],
118
- ascending=True
119
- ).reset_index(drop=True)
120
- else:
121
- chart_data_table = chart_data_table.sort_values(
122
- by=chart_data_table.columns[1],
123
- ascending=False
124
- ).reset_index(drop=True)
125
-
126
-
127
- styled_df = chart_data_table.style.format(
128
- {chart_data_table.columns[1]: "{:.3f}"}
129
- ).apply(
130
- highlight_first_element, axis=None
131
- )
132
-
133
-
134
- st.dataframe(
135
- styled_df,
136
- column_config={
137
- 'model_show': 'Model',
138
- chart_data_table.columns[1]: {'alignment': 'left'},
139
- "model_link": st.column_config.LinkColumn(
140
- "Model Link",
141
- ),
142
- },
143
- hide_index=True,
144
- use_container_width=True
145
- )
146
-
147
-
148
- # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
149
- '''
150
- Show Chart
151
- '''
152
-
153
- # Initialize a session state variable for toggling the chart visibility
154
- if "show_chart" not in st.session_state:
155
- st.session_state.show_chart = False
156
-
157
- # Create a button to toggle visibility
158
- if st.button("Show Chart"):
159
- st.session_state.show_chart = not st.session_state.show_chart
160
-
161
- if st.session_state.show_chart:
162
-
163
- with st.container():
164
- st.markdown('##### CHART')
165
-
166
- # Get Values
167
- data_values = chart_data.iloc[:, 1]
168
-
169
- # Calculate Q1 and Q3
170
- q1 = data_values.quantile(0.25)
171
- q3 = data_values.quantile(0.75)
172
-
173
- # Calculate IQR
174
- iqr = q3 - q1
175
-
176
- # Define lower and upper bounds (1.5*IQR is a common threshold)
177
- lower_bound = q1 - 1.5 * iqr
178
- upper_bound = q3 + 1.5 * iqr
179
-
180
- # Filter data within the bounds
181
- filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
182
-
183
- # Calculate min and max values after outlier handling
184
- min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
185
- max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
186
-
187
- options = {
188
- # "title": {"text": f"{dataset_name}"},
189
- "tooltip": {
190
- "trigger": "axis",
191
- "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
192
- "triggerOn": 'mousemove',
193
- },
194
- "legend": {"data": ['Overall Accuracy']},
195
- "toolbox": {"feature": {"saveAsImage": {}}},
196
- "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
197
- "xAxis": [
198
- {
199
- "type": "category",
200
- "boundaryGap": True,
201
- "triggerEvent": True,
202
- "data": chart_data['model_show'].tolist(),
203
- }
204
- ],
205
- "yAxis": [{"type": "value",
206
- "min": min_value,
207
- "max": max_value,
208
- "boundaryGap": True
209
- # "splitNumber": 10
210
- }],
211
- "series": [{
212
- "name": f"{dataset_name}",
213
- "type": "bar",
214
- "data": chart_data[f'{displayname}'].tolist(),
215
- }],
216
- }
217
-
218
- events = {
219
- "click": "function(params) { return params.value }"
220
- }
221
-
222
- value = st_echarts(options=options, events=events, height="500px")
223
-