delete due to wrong path
Browse files
pages.py
DELETED
@@ -1,626 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from app.draw_diagram import *
|
3 |
-
from app.content import *
|
4 |
-
from app.summarization import *
|
5 |
-
from app.show_examples import *
|
6 |
-
|
7 |
-
def dataset_contents(dataset, metrics):
|
8 |
-
|
9 |
-
custom_css = """
|
10 |
-
<style>
|
11 |
-
.my-dataset-info {
|
12 |
-
# background-color: #F9EBEA;
|
13 |
-
# padding: 10px;
|
14 |
-
color: #050505;
|
15 |
-
font-style: normal;
|
16 |
-
font-size: 8px;
|
17 |
-
height: auto;
|
18 |
-
}
|
19 |
-
</style>
|
20 |
-
"""
|
21 |
-
st.markdown(custom_css, unsafe_allow_html=True)
|
22 |
-
st.markdown(f"""<div class="my-dataset-info">
|
23 |
-
<p><b>About this dataset</b>: {dataset}</p>
|
24 |
-
</div>""", unsafe_allow_html=True)
|
25 |
-
st.markdown(f"""<div class="my-dataset-info">
|
26 |
-
<p><b>About this metric</b>: {metrics}</p>
|
27 |
-
</div>""", unsafe_allow_html=True)
|
28 |
-
|
29 |
-
|
30 |
-
def dashboard():
|
31 |
-
|
32 |
-
with st.container():
|
33 |
-
st.title("Leaderboard for AudioBench")
|
34 |
-
|
35 |
-
st.markdown("""
|
36 |
-
[gh1]: https://github.com/AudioLLMs/AudioBench
|
37 |
-
[gh2]: https://github.com/AudioLLMs/AudioBench
|
38 |
-
**Toolkit:** [][gh1] |
|
39 |
-
[**Paper @ NAACL 2025**](https://arxiv.org/abs/2406.16020) |
|
40 |
-
**Resource for AudioLLMs:** [][gh2]
|
41 |
-
""")
|
42 |
-
|
43 |
-
|
44 |
-
st.markdown("""
|
45 |
-
#### Recent updates
|
46 |
-
- **Jan. 2025**: AudioBench is officially accepted to NAACL 2025!
|
47 |
-
- **Jan. 2025**: Update the layout.
|
48 |
-
- **Dec. 2024**: Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
|
49 |
-
- **Dec. 2024**: Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).
|
50 |
-
- **Dec. 2024**: Updated layout and added support for comparison between models with similar sizes. 1) Reorganized layout for a better user experience. 2) Added performance summary for each task.
|
51 |
-
- **Aug. 2024**: Initial leaderboard is now online.
|
52 |
-
""")
|
53 |
-
|
54 |
-
st.divider()
|
55 |
-
|
56 |
-
st.markdown("""
|
57 |
-
#### Evaluating Audio-based Large Language Models
|
58 |
-
|
59 |
-
- AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
|
60 |
-
- AudioBench is an evaluation benchmark that we continually improve and maintain.
|
61 |
-
|
62 |
-
Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
|
63 |
-
"""
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
with st.container():
|
68 |
-
|
69 |
-
st.markdown('''
|
70 |
-
''')
|
71 |
-
|
72 |
-
st.markdown("###### :dart: Our Benchmark includes: ")
|
73 |
-
cols = st.columns(8)
|
74 |
-
cols[0].metric(label="Tasks", value=">8")
|
75 |
-
cols[1].metric(label="Datasets", value=">40")
|
76 |
-
cols[2].metric(label="Evaluated Models", value=">5")
|
77 |
-
|
78 |
-
st.divider()
|
79 |
-
with st.container():
|
80 |
-
left_co, right_co = st.columns([1, 0.1])
|
81 |
-
|
82 |
-
with left_co:
|
83 |
-
st.markdown("""
|
84 |
-
##### Citations :round_pushpin:
|
85 |
-
```
|
86 |
-
@article{wang2024audiobench,
|
87 |
-
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
|
88 |
-
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
|
89 |
-
journal={NAACL},
|
90 |
-
year={2025}
|
91 |
-
}
|
92 |
-
```
|
93 |
-
```
|
94 |
-
@article{zhang2024mowe,
|
95 |
-
title={MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders},
|
96 |
-
author={Zhang, Wenyu and Sun, Shuo and Wang, Bin and Zou, Xunlong and Liu, Zhuohan and He, Yingxu and Lin, Geyu and Chen, Nancy F and Aw, Ai Ti},
|
97 |
-
journal={ICASSP},
|
98 |
-
year={2025}
|
99 |
-
}
|
100 |
-
```
|
101 |
-
```
|
102 |
-
@article{wang2025advancing,
|
103 |
-
title={Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models},
|
104 |
-
author={Wang, Bin and Zou, Xunlong and Sun, Shuo and Zhang, Wenyu and He, Yingxu and Liu, Zhuohan and Wei, Chengwei and Chen, Nancy F and Aw, AiTi},
|
105 |
-
journal={arXiv preprint arXiv:2501.01034},
|
106 |
-
year={2025}
|
107 |
-
}
|
108 |
-
```
|
109 |
-
```
|
110 |
-
@article{he2024meralion,
|
111 |
-
title={MERaLiON-AudioLLM: Technical Report},
|
112 |
-
author={He, Yingxu and Liu, Zhuohan and Sun, Shuo and Wang, Bin and Zhang, Wenyu and Zou, Xunlong and Chen, Nancy F and Aw, Ai Ti},
|
113 |
-
journal={arXiv preprint arXiv:2412.09818},
|
114 |
-
year={2024}
|
115 |
-
}
|
116 |
-
```
|
117 |
-
|
118 |
-
""")
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
def asr_english():
|
127 |
-
st.title("Task: Automatic Speech Recognition - English")
|
128 |
-
|
129 |
-
sum = ['Overall']
|
130 |
-
dataset_lists = [
|
131 |
-
'LibriSpeech-Clean',
|
132 |
-
'LibriSpeech-Other',
|
133 |
-
'CommonVoice-15-EN',
|
134 |
-
'Peoples-Speech',
|
135 |
-
'GigaSpeech-1',
|
136 |
-
'Earnings-21',
|
137 |
-
'Earnings-22',
|
138 |
-
'TED-LIUM-3',
|
139 |
-
'TED-LIUM-3-LongForm',
|
140 |
-
]
|
141 |
-
|
142 |
-
filters_levelone = sum + dataset_lists
|
143 |
-
|
144 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
145 |
-
|
146 |
-
with left:
|
147 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
148 |
-
|
149 |
-
if filter_1:
|
150 |
-
if filter_1 in sum:
|
151 |
-
sum_table_mulit_metrix('asr_english', ['wer'])
|
152 |
-
else:
|
153 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
|
154 |
-
draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
def asr_singlish():
|
161 |
-
st.title("Task: Automatic Speech Recognition - Singlish")
|
162 |
-
|
163 |
-
sum = ['Overall']
|
164 |
-
dataset_lists = [
|
165 |
-
'MNSC-PART1-ASR',
|
166 |
-
'MNSC-PART2-ASR',
|
167 |
-
'MNSC-PART3-ASR',
|
168 |
-
'MNSC-PART4-ASR',
|
169 |
-
'MNSC-PART5-ASR',
|
170 |
-
'MNSC-PART6-ASR',
|
171 |
-
]
|
172 |
-
|
173 |
-
filters_levelone = sum + dataset_lists
|
174 |
-
|
175 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
176 |
-
|
177 |
-
with left:
|
178 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
179 |
-
|
180 |
-
if filter_1:
|
181 |
-
if filter_1 in sum:
|
182 |
-
sum_table_mulit_metrix('asr_singlish', ['wer'])
|
183 |
-
else:
|
184 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
|
185 |
-
draw('su', 'asr_singlish', filter_1, 'wer')
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
def asr_mandarin():
|
191 |
-
st.title("Task: Automatic Speech Recognition - Mandarin")
|
192 |
-
|
193 |
-
sum = ['Overall']
|
194 |
-
dataset_lists = [
|
195 |
-
'AISHELL-ASR-ZH',
|
196 |
-
]
|
197 |
-
|
198 |
-
filters_levelone = sum + dataset_lists
|
199 |
-
|
200 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
201 |
-
|
202 |
-
with left:
|
203 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
204 |
-
|
205 |
-
if filter_1:
|
206 |
-
if filter_1 in sum:
|
207 |
-
sum_table_mulit_metrix('asr_mandarin', ['wer'])
|
208 |
-
else:
|
209 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
|
210 |
-
draw('su', 'asr_mandarin', filter_1, 'wer')
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
def speech_translation():
|
216 |
-
st.title("Task: Speech Translation")
|
217 |
-
|
218 |
-
sum = ['Overall']
|
219 |
-
dataset_lists = [
|
220 |
-
'CoVoST2-EN-ID',
|
221 |
-
'CoVoST2-EN-ZH',
|
222 |
-
'CoVoST2-EN-TA',
|
223 |
-
'CoVoST2-ID-EN',
|
224 |
-
'CoVoST2-ZH-EN',
|
225 |
-
'CoVoST2-TA-EN']
|
226 |
-
|
227 |
-
filters_levelone = sum + dataset_lists
|
228 |
-
|
229 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
230 |
-
|
231 |
-
with left:
|
232 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
233 |
-
|
234 |
-
if filter_1:
|
235 |
-
if filter_1 in sum:
|
236 |
-
sum_table_mulit_metrix('st', ['bleu'])
|
237 |
-
else:
|
238 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['bleu'])
|
239 |
-
draw('su', 'ST', filter_1, 'bleu')
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
def speech_question_answering_english():
|
245 |
-
st.title("Task: Spoken Question Answering - English")
|
246 |
-
|
247 |
-
sum = ['Overall']
|
248 |
-
|
249 |
-
dataset_lists = [
|
250 |
-
'CN-College-Listen-MCQ',
|
251 |
-
'DREAM-TTS-MCQ',
|
252 |
-
'SLUE-P2-SQA5',
|
253 |
-
'Public-SG-Speech-QA',
|
254 |
-
'Spoken-SQuAD',
|
255 |
-
]
|
256 |
-
|
257 |
-
filters_levelone = sum + dataset_lists
|
258 |
-
|
259 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
260 |
-
|
261 |
-
with left:
|
262 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
263 |
-
|
264 |
-
if filter_1:
|
265 |
-
if filter_1 in sum:
|
266 |
-
sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])
|
267 |
-
|
268 |
-
#elif filter_1 in dataset_lists:
|
269 |
-
# dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
270 |
-
# draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
271 |
-
|
272 |
-
else:
|
273 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
274 |
-
draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
def speech_question_answering_singlish():
|
280 |
-
st.title("Task: Spoken Question Answering - Singlish")
|
281 |
-
|
282 |
-
sum = ['Overall']
|
283 |
-
|
284 |
-
dataset_lists = [
|
285 |
-
'MNSC-PART3-SQA',
|
286 |
-
'MNSC-PART4-SQA',
|
287 |
-
'MNSC-PART5-SQA',
|
288 |
-
'MNSC-PART6-SQA',
|
289 |
-
]
|
290 |
-
|
291 |
-
|
292 |
-
filters_levelone = sum + dataset_lists
|
293 |
-
|
294 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
295 |
-
|
296 |
-
with left:
|
297 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
298 |
-
|
299 |
-
if filter_1:
|
300 |
-
if filter_1 in sum:
|
301 |
-
sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
|
302 |
-
|
303 |
-
else:
|
304 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
305 |
-
draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')
|
306 |
-
|
307 |
-
|
308 |
-
def spoken_dialogue_summarization_singlish():
|
309 |
-
st.title("Task: Spoken Dialogue Summarization - Singlish")
|
310 |
-
|
311 |
-
sum = ['Overall']
|
312 |
-
|
313 |
-
dataset_lists = [
|
314 |
-
'MNSC-PART3-SDS',
|
315 |
-
'MNSC-PART4-SDS',
|
316 |
-
'MNSC-PART5-SDS',
|
317 |
-
'MNSC-PART6-SDS',
|
318 |
-
]
|
319 |
-
|
320 |
-
|
321 |
-
filters_levelone = sum + dataset_lists
|
322 |
-
|
323 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
324 |
-
|
325 |
-
with left:
|
326 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
327 |
-
|
328 |
-
if filter_1:
|
329 |
-
if filter_1 in sum:
|
330 |
-
sum_table_mulit_metrix('sds_singlish', ['llama3_70b_judge'])
|
331 |
-
|
332 |
-
else:
|
333 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
334 |
-
draw('su', 'sds_singlish', filter_1, 'llama3_70b_judge')
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
def speech_instruction():
|
340 |
-
st.title("Task: Speech Instruction")
|
341 |
-
|
342 |
-
sum = ['Overall']
|
343 |
-
|
344 |
-
dataset_lists = ['OpenHermes-Audio',
|
345 |
-
'ALPACA-Audio',
|
346 |
-
]
|
347 |
-
|
348 |
-
filters_levelone = sum + dataset_lists
|
349 |
-
|
350 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
351 |
-
|
352 |
-
with left:
|
353 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
354 |
-
|
355 |
-
if filter_1:
|
356 |
-
if filter_1 in sum:
|
357 |
-
sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
|
358 |
-
else:
|
359 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
360 |
-
draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
def audio_captioning():
|
366 |
-
st.title("Task: Audio Captioning")
|
367 |
-
|
368 |
-
filters_levelone = ['WavCaps',
|
369 |
-
'AudioCaps',
|
370 |
-
]
|
371 |
-
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
372 |
-
|
373 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
374 |
-
|
375 |
-
with left:
|
376 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
377 |
-
with middle:
|
378 |
-
metric = st.selectbox('Metric', filters_leveltwo)
|
379 |
-
|
380 |
-
if filter_1 or metric:
|
381 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info[metric.lower().replace('-', '_')])
|
382 |
-
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
def audio_scene_question_answering():
|
388 |
-
st.title("Task: Audio Scene Question Answering")
|
389 |
-
|
390 |
-
sum = ['Overall']
|
391 |
-
|
392 |
-
dataset_lists = ['Clotho-AQA',
|
393 |
-
'WavCaps-QA',
|
394 |
-
'AudioCaps-QA']
|
395 |
-
|
396 |
-
filters_levelone = sum + dataset_lists
|
397 |
-
|
398 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
399 |
-
|
400 |
-
with left:
|
401 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
402 |
-
|
403 |
-
if filter_1:
|
404 |
-
if filter_1 in sum:
|
405 |
-
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
|
406 |
-
else:
|
407 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
408 |
-
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
def emotion_recognition():
|
414 |
-
st.title("Task: Emotion Recognition")
|
415 |
-
|
416 |
-
sum = ['Overall']
|
417 |
-
|
418 |
-
dataset_lists = [
|
419 |
-
'IEMOCAP-Emotion',
|
420 |
-
'MELD-Sentiment',
|
421 |
-
'MELD-Emotion',
|
422 |
-
]
|
423 |
-
|
424 |
-
filters_levelone = sum + dataset_lists
|
425 |
-
|
426 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
427 |
-
|
428 |
-
with left:
|
429 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
430 |
-
|
431 |
-
if filter_1:
|
432 |
-
if filter_1 in sum:
|
433 |
-
sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
|
434 |
-
else:
|
435 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
436 |
-
draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
def accent_recognition():
|
442 |
-
st.title("Task: Accent Recognition")
|
443 |
-
|
444 |
-
sum = ['Overall']
|
445 |
-
dataset_lists = [
|
446 |
-
'VoxCeleb-Accent',
|
447 |
-
'MNSC-AR-Sentence',
|
448 |
-
'MNSC-AR-Dialogue',
|
449 |
-
]
|
450 |
-
|
451 |
-
|
452 |
-
filters_levelone = sum + dataset_lists
|
453 |
-
|
454 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
455 |
-
|
456 |
-
with left:
|
457 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
458 |
-
|
459 |
-
|
460 |
-
if filter_1:
|
461 |
-
if filter_1 in sum:
|
462 |
-
sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
|
463 |
-
else:
|
464 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
465 |
-
draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
def gender_recognition():
|
471 |
-
st.title("Task: Gender Recognition")
|
472 |
-
|
473 |
-
sum = ['Overall']
|
474 |
-
|
475 |
-
dataset_lists = [
|
476 |
-
'VoxCeleb-Gender',
|
477 |
-
'IEMOCAP-Gender'
|
478 |
-
]
|
479 |
-
|
480 |
-
filters_levelone = sum + dataset_lists
|
481 |
-
|
482 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
483 |
-
|
484 |
-
with left:
|
485 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
486 |
-
|
487 |
-
if filter_1:
|
488 |
-
if filter_1 in sum:
|
489 |
-
sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
|
490 |
-
else:
|
491 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
492 |
-
draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
def music_understanding():
|
498 |
-
st.title("Task: Music Understanding - MCQ Questions")
|
499 |
-
|
500 |
-
sum = ['Overall']
|
501 |
-
|
502 |
-
dataset_lists = ['MuChoMusic',
|
503 |
-
]
|
504 |
-
|
505 |
-
filters_levelone = sum + dataset_lists
|
506 |
-
|
507 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
508 |
-
|
509 |
-
with left:
|
510 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
511 |
-
|
512 |
-
if filter_1:
|
513 |
-
if filter_1 in sum:
|
514 |
-
sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
|
515 |
-
else:
|
516 |
-
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
517 |
-
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
def under_development():
|
529 |
-
st.title("Task: Under Development")
|
530 |
-
|
531 |
-
|
532 |
-
dataset_lists = [
|
533 |
-
'CNA',
|
534 |
-
'IDPC',
|
535 |
-
'Parliament',
|
536 |
-
'UKUS-News',
|
537 |
-
'Mediacorp',
|
538 |
-
'IDPC-Short',
|
539 |
-
'Parliament-Short',
|
540 |
-
'UKUS-News-Short',
|
541 |
-
'Mediacorp-Short',
|
542 |
-
|
543 |
-
'YouTube ASR: English Singapore Content',
|
544 |
-
'YouTube ASR: English with Strong Emotion',
|
545 |
-
'YouTube ASR: Malay English Prompt',
|
546 |
-
'YouTube ASR: Malay with Malay Prompt',
|
547 |
-
|
548 |
-
'SEAME-Dev-Mandarin',
|
549 |
-
'SEAME-Dev-Singlish',
|
550 |
-
|
551 |
-
'YouTube SQA: English with Singapore Content',
|
552 |
-
'YouTube SDS: English with Singapore Content',
|
553 |
-
'YouTube PQA: English with Singapore Content',
|
554 |
-
|
555 |
-
]
|
556 |
-
|
557 |
-
filters_levelone = dataset_lists
|
558 |
-
|
559 |
-
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
560 |
-
|
561 |
-
with left:
|
562 |
-
filter_1 = st.selectbox('Dataset', filters_levelone)
|
563 |
-
|
564 |
-
dataset_contents(dataset_diaplay_information[filter_1], 'under_development')
|
565 |
-
|
566 |
-
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
567 |
-
|
568 |
-
'''
|
569 |
-
Show Dataset Examples
|
570 |
-
'''
|
571 |
-
|
572 |
-
# Initialize a session state variable for toggling the chart visibility
|
573 |
-
if "show_dataset_examples" not in st.session_state:
|
574 |
-
st.session_state.show_dataset_examples = False
|
575 |
-
|
576 |
-
# Create a button to toggle visibility
|
577 |
-
if st.button("Show Dataset Examples"):
|
578 |
-
st.session_state.show_dataset_examples = not st.session_state.show_dataset_examples
|
579 |
-
|
580 |
-
if st.session_state.show_dataset_examples:
|
581 |
-
|
582 |
-
# st.markdown('To be implemented')
|
583 |
-
|
584 |
-
# # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
|
585 |
-
if filter_1 in []:
|
586 |
-
pass
|
587 |
-
else:
|
588 |
-
try:
|
589 |
-
show_dataset_examples(filter_1)
|
590 |
-
except:
|
591 |
-
st.markdown('To be implemented')
|
592 |
-
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
593 |
-
|
594 |
-
if filter_1 in [
|
595 |
-
'CNA',
|
596 |
-
'IDPC',
|
597 |
-
'Parliament',
|
598 |
-
'UKUS-News',
|
599 |
-
'Mediacorp',
|
600 |
-
'IDPC-Short',
|
601 |
-
'Parliament-Short',
|
602 |
-
'UKUS-News-Short',
|
603 |
-
'Mediacorp-Short',
|
604 |
-
|
605 |
-
'YouTube ASR: English Singapore Content',
|
606 |
-
'YouTube ASR: English with Strong Emotion',
|
607 |
-
'YouTube ASR: Malay English Prompt',
|
608 |
-
'YouTube ASR: Malay with Malay Prompt',
|
609 |
-
|
610 |
-
'SEAME-Dev-Mandarin',
|
611 |
-
'SEAME-Dev-Singlish',
|
612 |
-
]:
|
613 |
-
|
614 |
-
draw('vu', 'under_development_wer', filter_1, 'wer')
|
615 |
-
|
616 |
-
elif filter_1 in [
|
617 |
-
'YouTube SQA: English with Singapore Content',
|
618 |
-
'YouTube SDS: English with Singapore Content',
|
619 |
-
'YouTube PQA: English with Singapore Content',
|
620 |
-
]:
|
621 |
-
draw('vu', 'under_development_llama3_70b_judge', filter_1, 'llama3_70b_judge')
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|