Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import os | |
| import re | |
| from datetime import datetime | |
| from huggingface_hub import hf_hub_download | |
| from huggingface_hub import HfApi, HfFolder | |
| LEADERBOARD_FILE = "leaderboard.csv" | |
| GROUND_TRUTH_FILE = "ground_truth.csv" | |
| LAST_UPDATED = datetime.now().strftime("%B %d, %Y") | |
| # Ensure authentication and suppress warnings | |
| os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if not HF_TOKEN: | |
| raise ValueError("HF_TOKEN environment variable is not set or invalid.") | |
| def initialize_leaderboard_file(): | |
| """ | |
| Ensure the leaderboard file exists and has the correct headers. | |
| """ | |
| if not os.path.exists(LEADERBOARD_FILE): | |
| pd.DataFrame(columns=[ | |
| "Model Name", "Overall Accuracy", "Valid Accuracy", | |
| "Correct Predictions", "Total Questions", "Timestamp" | |
| ]).to_csv(LEADERBOARD_FILE, index=False) | |
| elif os.stat(LEADERBOARD_FILE).st_size == 0: | |
| pd.DataFrame(columns=[ | |
| "Model Name", "Overall Accuracy", "Valid Accuracy", | |
| "Correct Predictions", "Total Questions", "Timestamp" | |
| ]).to_csv(LEADERBOARD_FILE, index=False) | |
| def clean_answer(answer): | |
| if pd.isna(answer): | |
| return None | |
| answer = str(answer) | |
| clean = re.sub(r'[^A-Da-d]', '', answer) | |
| return clean[0].upper() if clean else None | |
| def update_leaderboard(results): | |
| """ | |
| Append new submission results to the leaderboard file and push updates to the Hugging Face repository. | |
| """ | |
| new_entry = { | |
| "Model Name": results['model_name'], | |
| "Overall Accuracy": round(results['overall_accuracy'] * 100, 2), | |
| "Valid Accuracy": round(results['valid_accuracy'] * 100, 2), | |
| "Correct Predictions": results['correct_predictions'], | |
| "Total Questions": results['total_questions'], | |
| "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
| } | |
| try: | |
| # Update the local leaderboard file | |
| new_entry_df = pd.DataFrame([new_entry]) | |
| file_exists = os.path.exists(LEADERBOARD_FILE) | |
| new_entry_df.to_csv( | |
| LEADERBOARD_FILE, | |
| mode='a', # Append mode | |
| index=False, | |
| header=not file_exists # Write header only if the file is new | |
| ) | |
| print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}") | |
| # Push the updated file to the Hugging Face repository using HTTP API | |
| api = HfApi() | |
| token = HfFolder.get_token() | |
| api.upload_file( | |
| path_or_fileobj=LEADERBOARD_FILE, | |
| path_in_repo="leaderboard.csv", | |
| repo_id="SondosMB/ss", # Your Space repository | |
| repo_type="space", | |
| token=token | |
| ) | |
| print("Leaderboard changes pushed to Hugging Face repository.") | |
| except Exception as e: | |
| print(f"Error updating leaderboard file: {e}") | |
| def load_leaderboard(): | |
| if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0: | |
| return pd.DataFrame({ | |
| "Model Name": [], | |
| "Overall Accuracy": [], | |
| "Valid Accuracy": [], | |
| "Correct Predictions": [], | |
| "Total Questions": [], | |
| "Timestamp": [], | |
| }) | |
| return pd.read_csv(LEADERBOARD_FILE) | |
| def evaluate_predictions(prediction_file, model_name, add_to_leaderboard): | |
| try: | |
| ground_truth_path = hf_hub_download( | |
| repo_id="SondosMB/ground-truth-dataset", | |
| filename="ground_truth.csv", | |
| repo_type="dataset", | |
| use_auth_token=True | |
| ) | |
| ground_truth_df = pd.read_csv(ground_truth_path) | |
| except FileNotFoundError: | |
| return "Ground truth file not found in the dataset repository.", load_leaderboard() | |
| except Exception as e: | |
| return f"Error loading ground truth: {e}", load_leaderboard() | |
| if not prediction_file: | |
| return "Prediction file not uploaded.", load_leaderboard() | |
| try: | |
| predictions_df = pd.read_csv(prediction_file.name) | |
| merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner') | |
| merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer) | |
| valid_predictions = merged_df.dropna(subset=['pred_answer']) | |
| correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum() | |
| total_predictions = len(merged_df) | |
| total_valid_predictions = len(valid_predictions) | |
| overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0 | |
| valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0 | |
| results = { | |
| 'model_name': model_name if model_name else "Unknown Model", | |
| 'overall_accuracy': overall_accuracy, | |
| 'valid_accuracy': valid_accuracy, | |
| 'correct_predictions': correct_predictions, | |
| 'total_questions': total_predictions, | |
| } | |
| if add_to_leaderboard: | |
| update_leaderboard(results) | |
| return "Evaluation completed and added to leaderboard.", load_leaderboard() | |
| else: | |
| return "Evaluation completed but not added to leaderboard.", load_leaderboard() | |
| except Exception as e: | |
| return f"Error during evaluation: {str(e)}", load_leaderboard() | |
| initialize_leaderboard_file() | |
| # Function to set default mode | |
| # Function to set default mode | |
| import gradio as gr | |
| # Ensure CSS is correctly defined | |
| css_tech_theme = """ | |
| body { | |
| background-color: #f4f6fa; | |
| color: #333333; | |
| font-family: 'Roboto', sans-serif; | |
| line-height: 1.8; | |
| } | |
| .center-content { | |
| display: flex; | |
| flex-direction: column; | |
| align-items: center; | |
| justify-content: center; | |
| text-align: center; | |
| margin: 30px 0; | |
| padding: 20px; | |
| } | |
| h1, h3 { | |
| color: #5e35b1; | |
| margin: 15px 0; | |
| text-align: center; | |
| } | |
| """ | |
| # Ensure all required functions and variables are defined | |
| def evaluate_predictions(file, model_name, add_to_leaderboard): | |
| # Add logic for evaluating predictions | |
| return "Evaluation completed", 90.0 # Example return | |
| def load_leaderboard(): | |
| # Add logic for loading leaderboard | |
| return [{"Model Name": "Example", "Accuracy": 90}] | |
| LAST_UPDATED = "December 21, 2024" | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css_tech_theme) as demo: | |
| gr.Markdown(""" | |
| <div class="center-content"> | |
| <h1>π Mobile-MMLU Benchmark Competition</h1> | |
| <h3>π Welcome to the Competition Overview</h3> | |
| <img src="https://via.placeholder.com/200" alt="Competition Logo"> | |
| <p> | |
| Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions, | |
| view the leaderboard, and track your performance! | |
| </p> | |
| <hr> | |
| </div> | |
| """) | |
| with gr.Tabs(elem_id="tabs"): | |
| with gr.TabItem("π Overview"): | |
| gr.Markdown(""" | |
| ## Overview | |
| Welcome to the **Mobile-MMLU Benchmark Competition**! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**. | |
| --- | |
| ### What is Mobile-MMLU? | |
| Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy. | |
| --- | |
| ### How It Works | |
| 1. **Download the Dataset** | |
| Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo). | |
| 2. **Generate Predictions** | |
| Use your LLM to answer the dataset questions. Format your predictions as a CSV file. | |
| 3. **Submit Predictions** | |
| Upload your predictions on this platform. | |
| 4. **Evaluation** | |
| Submissions are scored on accuracy. | |
| 5. **Leaderboard** | |
| View real-time rankings on the leaderboard. | |
| --- | |
| """) | |
| with gr.TabItem("π€ Submission"): | |
| with gr.Row(): | |
| file_input = gr.File(label="π Upload Prediction CSV", file_types=[".csv"], interactive=True) | |
| model_name_input = gr.Textbox(label="ποΈ Model Name", placeholder="Enter your model name") | |
| with gr.Row(): | |
| overall_accuracy_display = gr.Number(label="π Overall Accuracy", interactive=False) | |
| add_to_leaderboard_checkbox = gr.Checkbox(label="π Add to Leaderboard?", value=True) | |
| eval_button = gr.Button("Evaluate", elem_id="evaluate-button") | |
| eval_status = gr.Textbox(label="π’ Evaluation Status", interactive=False) | |
| eval_button.click( | |
| evaluate_predictions, | |
| inputs=[file_input, model_name_input, add_to_leaderboard_checkbox], | |
| outputs=[eval_status, overall_accuracy_display], | |
| ) | |
| with gr.TabItem("π Leaderboard"): | |
| leaderboard_table = gr.Dataframe( | |
| value=load_leaderboard(), | |
| label="Leaderboard", | |
| interactive=False, | |
| wrap=True, | |
| ) | |
| refresh_button = gr.Button("Refresh Leaderboard") | |
| refresh_button.click( | |
| lambda: load_leaderboard(), | |
| inputs=[], | |
| outputs=[leaderboard_table], | |
| ) | |
| gr.Markdown(f"**Last updated:** {LAST_UPDATED}") | |
| demo.launch() | |