File size: 7,015 Bytes
24a059f c308901 24a059f 5d5c6ec 24a059f c308901 24a059f e4f66e8 24a059f e4f66e8 24a059f e4f66e8 24a059f e4f66e8 24a059f e4f66e8 24a059f e4f66e8 24a059f c308901 e4f66e8 c308901 24a059f e4f66e8 5d5c6ec c308901 24a059f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
def clean_answer(answer):
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
if clean:
first_letter = clean[0].upper()
if first_letter in ['A', 'B', 'C', 'D']:
return first_letter
return None
def write_evaluation_results(results, output_file):
os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
output_text = [
f"Evaluation Results for Model: {results['model_name']}",
f"Timestamp: {timestamp}",
"-" * 50,
f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
f"Total Questions: {results['total_questions']}",
f"Valid Predictions: {results['valid_predictions']}",
f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
f"Correct Predictions: {results['correct_predictions']}",
"\nPerformance by Field:",
"-" * 50
]
for field, metrics in results['field_performance'].items():
field_results = [
f"\nField: {field}",
f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
f"Correct: {metrics['correct']}/{metrics['total']}",
f"Invalid predictions: {metrics['invalid']}"
]
output_text.extend(field_results)
with open(output_file, 'w') as f:
f.write('\n'.join(output_text))
print('\n'.join(output_text))
print(f"\nResults have been saved to: {output_file}")
def update_leaderboard(results):
# Add results to the leaderboard file
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": f"{results['overall_accuracy']:.2%}",
"Valid Accuracy": f"{results['valid_accuracy']:.2%}",
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
leaderboard_df = pd.DataFrame([new_entry])
if os.path.exists(LEADERBOARD_FILE):
existing_df = pd.read_csv(LEADERBOARD_FILE)
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
def display_leaderboard():
if not os.path.exists(LEADERBOARD_FILE):
return "Leaderboard is empty."
leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
return leaderboard_df.to_markdown(index=False)
def evaluate_predictions(prediction_file):
ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file
if not prediction_file:
return "Prediction file not uploaded", None
if not os.path.exists(ground_truth_file):
return "Ground truth file not found", None
try:
predictions_df = pd.read_csv(prediction_file.name)
ground_truth_df = pd.read_csv(ground_truth_file)
# Extract model name
try:
filename = os.path.basename(prediction_file.name)
if "_" in filename and "." in filename:
model_name = filename.split('_')[1].split('.')[0]
else:
model_name = "unknown_model"
except IndexError:
model_name = "unknown_model"
# Merge dataframes
merged_df = pd.merge(
predictions_df,
ground_truth_df,
on='question_id',
how='inner'
)
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
invalid_predictions = merged_df['pred_answer'].isna().sum()
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
total_valid_predictions = len(valid_predictions)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
valid_accuracy = (
correct_predictions / total_valid_predictions
if total_valid_predictions > 0
else 0
)
field_metrics = {}
for field in merged_df['Field'].unique():
field_data = merged_df[merged_df['Field'] == field]
field_valid_data = field_data.dropna(subset=['pred_answer'])
field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
field_total = len(field_data)
field_valid_total = len(field_valid_data)
field_invalid = field_total - field_valid_total
field_metrics[field] = {
'accuracy': field_correct / field_total if field_total > 0 else 0,
'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
'correct': field_correct,
'total': field_total,
'invalid': field_invalid
}
results = {
'model_name': model_name,
'overall_accuracy': overall_accuracy,
'valid_accuracy': valid_accuracy,
'total_questions': total_predictions,
'valid_predictions': total_valid_predictions,
'invalid_predictions': invalid_predictions,
'correct_predictions': correct_predictions,
'field_performance': field_metrics
}
update_leaderboard(results)
output_file = "evaluation_results.txt"
write_evaluation_results(results, output_file)
return "Evaluation completed successfully! Leaderboard updated.", output_file
except Exception as e:
return f"Error during evaluation: {str(e)}", None
# Gradio Interface
description = "Upload a prediction CSV file to evaluate predictions against the ground truth and update the leaderboard."
demo = gr.Blocks()
with demo:
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
with gr.Tab("Evaluate"):
file_input = gr.File(label="Upload Prediction CSV")
eval_status = gr.Textbox(label="Evaluation Status")
eval_results_file = gr.File(label="Download Evaluation Results")
eval_button = gr.Button("Evaluate")
eval_button.click(
evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file]
)
with gr.Tab("Leaderboard"):
leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(display_leaderboard, outputs=leaderboard_text)
if __name__ == "__main__":
demo.launch()
|