sudoping01's picture
Update app.py
6e99c6f verified
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
# Login to Hugging Face Hub (if token is available)
token = os.environ.get("HG_TOKEN")
if token:
login(token)
try:
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
references = {row["id"]: row["text"] for row in dataset}
print(f"Loaded {len(references)} reference transcriptions")
except Exception as e:
print(f"Error loading dataset: {str(e)}")
references = {}
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
sample_data = [
["test_1", 0.2264, 0.1094, 0.1922, "2025-03-15 10:30:45"],
["test_2", 0.3264, 0.1094, 0.1922, "2025-03-15 10:30:45"],
]
pd.DataFrame(sample_data,
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
print(f"Created new leaderboard file with sample data")
else:
leaderboard_df = pd.read_csv(leaderboard_file)
if "Combined_Score" not in leaderboard_df.columns:
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
leaderboard_df.to_csv(leaderboard_file, index=False)
print(f"Added Combined_Score column to existing leaderboard")
print(f"Loaded leaderboard with {len(leaderboard_df)} entries")
def normalize_text(text):
"""Normalize text for WER/CER calculation"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
total_ref_words = 0
total_ref_chars = 0
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
continue
reference_words = reference.split()
hypothesis_words = hypothesis.split()
reference_chars = list(reference)
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
sample_wer = min(sample_wer, 2.0)
sample_cer = min(sample_cer, 2.0)
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error processing sample {id_val}: {str(e)}")
pass
if not results:
raise ValueError("No valid samples for WER/CER calculation")
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
def format_as_percentage(value):
"""Convert decimal to percentage with 2 decimal places"""
return f"{value * 100:.2f}%"
def prepare_leaderboard_for_display(df, sort_by="Combined_Score"):
"""Format leaderboard for display with ranking and percentages"""
if df is None or len(df) == 0:
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
display_df = df.copy()
display_df = display_df.sort_values(sort_by)
display_df.insert(0, "Rank", range(1, len(display_df) + 1))
for col in ["WER", "CER", "Combined_Score"]:
if col in display_df.columns:
display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}")
return display_df
def update_ranking(method):
"""Update leaderboard ranking based on selected method"""
try:
current_lb = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_lb.columns:
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
sort_column = "Combined_Score"
if method == "WER Only":
sort_column = "WER"
elif method == "CER Only":
sort_column = "CER"
return prepare_leaderboard_for_display(current_lb, sort_column)
except Exception as e:
print(f"Error updating ranking: {str(e)}")
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
def process_submission(model_name, csv_file):
"""Process a new model submission"""
if not model_name or not model_name.strip():
return "Error: Please provide a model name.", None
if not csv_file:
return "Error: Please upload a CSV file.", None
try:
df = pd.read_csv(csv_file)
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# Check for suspiciously low values
if avg_wer < 0.001:
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
return f"Error calculating metrics: {str(e)}", None
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
combined_score = avg_wer * 0.7 + avg_cer * 0.3
if model_name in leaderboard["Model_Name"].values:
idx = leaderboard[leaderboard["Model_Name"] == model_name].index
leaderboard.loc[idx, "WER"] = avg_wer
leaderboard.loc[idx, "CER"] = avg_cer
leaderboard.loc[idx, "Combined_Score"] = combined_score
leaderboard.loc[idx, "timestamp"] = timestamp
updated_leaderboard = leaderboard
else:
new_entry = pd.DataFrame(
[[model_name, avg_wer, avg_cer, combined_score, timestamp]],
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
)
updated_leaderboard = pd.concat([leaderboard, new_entry])
updated_leaderboard = updated_leaderboard.sort_values("Combined_Score")
updated_leaderboard.to_csv(leaderboard_file, index=False)
display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard)
return f"Submission processed successfully! WER: {format_as_percentage(avg_wer)}, CER: {format_as_percentage(avg_cer)}, Combined Score: {format_as_percentage(combined_score)}", display_leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
def get_current_leaderboard():
"""Get the current leaderboard data for display"""
try:
if os.path.exists(leaderboard_file):
current_leaderboard = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_leaderboard.columns:
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
current_leaderboard.to_csv(leaderboard_file, index=False)
return current_leaderboard
else:
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
except Exception as e:
print(f"Error getting leaderboard: {str(e)}")
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
def create_leaderboard_table():
"""Create and format the leaderboard table for display"""
leaderboard_data = get_current_leaderboard()
return prepare_leaderboard_for_display(leaderboard_data)
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# πŸ‡²πŸ‡± Bambara ASR Leaderboard
This leaderboard tracks and evaluates speech recognition models for the Bambara language.
Models are ranked based on Word Error Rate (WER), Character Error Rate (CER), and a combined score.
## Current Models Performance
"""
)
current_data = get_current_leaderboard()
if len(current_data) > 0:
best_model = current_data.sort_values("Combined_Score").iloc[0]
gr.Markdown(f"""
### πŸ† Current Best Model: **{best_model['Model_Name']}**
* WER: **{best_model['WER']*100:.2f}%**
* CER: **{best_model['CER']*100:.2f}%**
* Combined Score: **{best_model['Combined_Score']*100:.2f}%**
""")
with gr.Tabs() as tabs:
with gr.TabItem("πŸ… Model Rankings"):
initial_leaderboard = create_leaderboard_table()
ranking_method = gr.Radio(
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
label="Ranking Method",
value="Combined Score (WER 70%, CER 30%)"
)
leaderboard_view = gr.DataFrame(
value=initial_leaderboard,
interactive=False,
label="Models are ranked by selected metric - lower is better"
)
ranking_method.change(
fn=update_ranking,
inputs=[ranking_method],
outputs=[leaderboard_view]
)
with gr.Accordion("Metrics Explanation", open=False):
gr.Markdown(
"""
## Understanding ASR Metrics
### Word Error Rate (WER)
WER measures how accurately the ASR system recognizes whole words:
* Lower values indicate better performance
* Calculated as: (Substitutions + Insertions + Deletions) / Total Words
* A WER of 0% means perfect transcription
* A WER of 20% means approximately 1 in 5 words contains an error
### Character Error Rate (CER)
CER measures accuracy at the character level:
* More fine-grained than WER
* Better at capturing partial word matches
* Particularly useful for agglutinative languages like Bambara
### Combined Score
* Weighted average: 70% WER + 30% CER
* Provides a balanced evaluation of model performance
* Used as the primary ranking metric
"""
)
with gr.TabItem("πŸ“Š Submit New Results"):
gr.Markdown(
"""
### Submit a new model for evaluation
Upload a CSV file with the following format:
* Must contain exactly two columns: 'id' and 'text'
* The 'id' column should match the reference dataset IDs
* The 'text' column should contain your model's transcriptions
"""
)
with gr.Row():
model_name_input = gr.Textbox(
label="Model Name",
placeholder="e.g., MALIBA-AI/bambara-asr"
)
gr.Markdown("*Use a descriptive name to identify your model*")
with gr.Row():
csv_upload = gr.File(
label="Upload CSV File",
file_types=[".csv"]
)
gr.Markdown("*CSV with columns: id, text*")
submit_btn = gr.Button("Submit", variant="primary")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Updated Leaderboard",
value=initial_leaderboard,
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[model_name_input, csv_upload],
outputs=[output_msg, leaderboard_display]
)
with gr.TabItem("πŸ“ Benchmark Dataset"):
gr.Markdown(
"""
## About the Benchmark Dataset
This leaderboard uses the **[sudoping01/bambara-speech-recognition-benchmark](https://huggingface.co/datasets/MALIBA-AI/bambara-speech-recognition-leaderboard)** dataset:
* Contains diverse Bambara speech samples
* Includes various speakers, accents, and dialects
* Covers different speech styles and recording conditions
* Transcribed and validated
### How to Generate Predictions
To submit results to this leaderboard:
1. Download the audio files from the benchmark dataset
2. Run your ASR model on the audio files
3. Generate a CSV file with 'id' and 'text' columns
4. Submit your results using the form in the "Submit New Results" tab
### Evaluation Guidelines
* Text is normalized (lowercase, punctuation removed) before metrics calculation
* Extreme outliers are capped to prevent skewing results
* All submissions are validated for format and completeness
NB: This work is a collaboration between MALIBA-AI, RobotsMali AI4D-LAB and Djelia
"""
)
gr.Markdown(
"""
---
### About MALIBA-AI
**MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation**
*"No Malian Language Left Behind"*
This leaderboard is maintained by the MALIBA-AI initiative to track progress in Bambara speech recognition technology.
For more information, visit [MALIBA-AI on Hugging Face](https://huggingface.co/MALIBA-AI).
"""
)
if __name__ == "__main__":
demo.launch()