Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from datasets import load_dataset | |
from jiwer import wer, cer | |
import os | |
from datetime import datetime | |
import re | |
from huggingface_hub import login | |
# Login to Hugging Face Hub (if token is available) | |
token = os.environ.get("HG_TOKEN") | |
if token: | |
login(token) | |
try: | |
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"] | |
references = {row["id"]: row["text"] for row in dataset} | |
print(f"Loaded {len(references)} reference transcriptions") | |
except Exception as e: | |
print(f"Error loading dataset: {str(e)}") | |
references = {} | |
leaderboard_file = "leaderboard.csv" | |
if not os.path.exists(leaderboard_file): | |
sample_data = [ | |
["test_1", 0.2264, 0.1094, 0.1922, "2025-03-15 10:30:45"], | |
["test_2", 0.3264, 0.1094, 0.1922, "2025-03-15 10:30:45"], | |
] | |
pd.DataFrame(sample_data, | |
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False) | |
print(f"Created new leaderboard file with sample data") | |
else: | |
leaderboard_df = pd.read_csv(leaderboard_file) | |
if "Combined_Score" not in leaderboard_df.columns: | |
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3 | |
leaderboard_df.to_csv(leaderboard_file, index=False) | |
print(f"Added Combined_Score column to existing leaderboard") | |
print(f"Loaded leaderboard with {len(leaderboard_df)} entries") | |
def normalize_text(text): | |
"""Normalize text for WER/CER calculation""" | |
if not isinstance(text, str): | |
text = str(text) | |
text = text.lower() | |
text = re.sub(r'[^\w\s]', '', text) | |
text = re.sub(r'\s+', ' ', text).strip() | |
return text | |
def calculate_metrics(predictions_df): | |
"""Calculate WER and CER for predictions.""" | |
results = [] | |
total_ref_words = 0 | |
total_ref_chars = 0 | |
for _, row in predictions_df.iterrows(): | |
id_val = row["id"] | |
if id_val not in references: | |
continue | |
reference = normalize_text(references[id_val]) | |
hypothesis = normalize_text(row["text"]) | |
if not reference or not hypothesis: | |
continue | |
reference_words = reference.split() | |
hypothesis_words = hypothesis.split() | |
reference_chars = list(reference) | |
try: | |
sample_wer = wer(reference, hypothesis) | |
sample_cer = cer(reference, hypothesis) | |
sample_wer = min(sample_wer, 2.0) | |
sample_cer = min(sample_cer, 2.0) | |
total_ref_words += len(reference_words) | |
total_ref_chars += len(reference_chars) | |
results.append({ | |
"id": id_val, | |
"reference": reference, | |
"hypothesis": hypothesis, | |
"ref_word_count": len(reference_words), | |
"ref_char_count": len(reference_chars), | |
"wer": sample_wer, | |
"cer": sample_cer | |
}) | |
except Exception as e: | |
print(f"Error processing sample {id_val}: {str(e)}") | |
pass | |
if not results: | |
raise ValueError("No valid samples for WER/CER calculation") | |
avg_wer = sum(item["wer"] for item in results) / len(results) | |
avg_cer = sum(item["cer"] for item in results) / len(results) | |
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words | |
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars | |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results | |
def format_as_percentage(value): | |
"""Convert decimal to percentage with 2 decimal places""" | |
return f"{value * 100:.2f}%" | |
def prepare_leaderboard_for_display(df, sort_by="Combined_Score"): | |
"""Format leaderboard for display with ranking and percentages""" | |
if df is None or len(df) == 0: | |
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"]) | |
display_df = df.copy() | |
display_df = display_df.sort_values(sort_by) | |
display_df.insert(0, "Rank", range(1, len(display_df) + 1)) | |
for col in ["WER", "CER", "Combined_Score"]: | |
if col in display_df.columns: | |
display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}") | |
return display_df | |
def update_ranking(method): | |
"""Update leaderboard ranking based on selected method""" | |
try: | |
current_lb = pd.read_csv(leaderboard_file) | |
if "Combined_Score" not in current_lb.columns: | |
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3 | |
sort_column = "Combined_Score" | |
if method == "WER Only": | |
sort_column = "WER" | |
elif method == "CER Only": | |
sort_column = "CER" | |
return prepare_leaderboard_for_display(current_lb, sort_column) | |
except Exception as e: | |
print(f"Error updating ranking: {str(e)}") | |
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"]) | |
def process_submission(model_name, csv_file): | |
"""Process a new model submission""" | |
if not model_name or not model_name.strip(): | |
return "Error: Please provide a model name.", None | |
if not csv_file: | |
return "Error: Please upload a CSV file.", None | |
try: | |
df = pd.read_csv(csv_file) | |
if len(df) == 0: | |
return "Error: Uploaded CSV is empty.", None | |
if set(df.columns) != {"id", "text"}: | |
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None | |
if df["id"].duplicated().any(): | |
dup_ids = df[df["id"].duplicated()]["id"].unique() | |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None | |
missing_ids = set(references.keys()) - set(df["id"]) | |
extra_ids = set(df["id"]) - set(references.keys()) | |
if missing_ids: | |
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None | |
if extra_ids: | |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None | |
try: | |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df) | |
# Check for suspiciously low values | |
if avg_wer < 0.001: | |
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None | |
except Exception as e: | |
return f"Error calculating metrics: {str(e)}", None | |
leaderboard = pd.read_csv(leaderboard_file) | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
combined_score = avg_wer * 0.7 + avg_cer * 0.3 | |
if model_name in leaderboard["Model_Name"].values: | |
idx = leaderboard[leaderboard["Model_Name"] == model_name].index | |
leaderboard.loc[idx, "WER"] = avg_wer | |
leaderboard.loc[idx, "CER"] = avg_cer | |
leaderboard.loc[idx, "Combined_Score"] = combined_score | |
leaderboard.loc[idx, "timestamp"] = timestamp | |
updated_leaderboard = leaderboard | |
else: | |
new_entry = pd.DataFrame( | |
[[model_name, avg_wer, avg_cer, combined_score, timestamp]], | |
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"] | |
) | |
updated_leaderboard = pd.concat([leaderboard, new_entry]) | |
updated_leaderboard = updated_leaderboard.sort_values("Combined_Score") | |
updated_leaderboard.to_csv(leaderboard_file, index=False) | |
display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard) | |
return f"Submission processed successfully! WER: {format_as_percentage(avg_wer)}, CER: {format_as_percentage(avg_cer)}, Combined Score: {format_as_percentage(combined_score)}", display_leaderboard | |
except Exception as e: | |
return f"Error processing submission: {str(e)}", None | |
def get_current_leaderboard(): | |
"""Get the current leaderboard data for display""" | |
try: | |
if os.path.exists(leaderboard_file): | |
current_leaderboard = pd.read_csv(leaderboard_file) | |
if "Combined_Score" not in current_leaderboard.columns: | |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3 | |
current_leaderboard.to_csv(leaderboard_file, index=False) | |
return current_leaderboard | |
else: | |
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]) | |
except Exception as e: | |
print(f"Error getting leaderboard: {str(e)}") | |
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]) | |
def create_leaderboard_table(): | |
"""Create and format the leaderboard table for display""" | |
leaderboard_data = get_current_leaderboard() | |
return prepare_leaderboard_for_display(leaderboard_data) | |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo: | |
gr.Markdown( | |
""" | |
# π²π± Bambara ASR Leaderboard | |
This leaderboard tracks and evaluates speech recognition models for the Bambara language. | |
Models are ranked based on Word Error Rate (WER), Character Error Rate (CER), and a combined score. | |
## Current Models Performance | |
""" | |
) | |
current_data = get_current_leaderboard() | |
if len(current_data) > 0: | |
best_model = current_data.sort_values("Combined_Score").iloc[0] | |
gr.Markdown(f""" | |
### π Current Best Model: **{best_model['Model_Name']}** | |
* WER: **{best_model['WER']*100:.2f}%** | |
* CER: **{best_model['CER']*100:.2f}%** | |
* Combined Score: **{best_model['Combined_Score']*100:.2f}%** | |
""") | |
with gr.Tabs() as tabs: | |
with gr.TabItem("π Model Rankings"): | |
initial_leaderboard = create_leaderboard_table() | |
ranking_method = gr.Radio( | |
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"], | |
label="Ranking Method", | |
value="Combined Score (WER 70%, CER 30%)" | |
) | |
leaderboard_view = gr.DataFrame( | |
value=initial_leaderboard, | |
interactive=False, | |
label="Models are ranked by selected metric - lower is better" | |
) | |
ranking_method.change( | |
fn=update_ranking, | |
inputs=[ranking_method], | |
outputs=[leaderboard_view] | |
) | |
with gr.Accordion("Metrics Explanation", open=False): | |
gr.Markdown( | |
""" | |
## Understanding ASR Metrics | |
### Word Error Rate (WER) | |
WER measures how accurately the ASR system recognizes whole words: | |
* Lower values indicate better performance | |
* Calculated as: (Substitutions + Insertions + Deletions) / Total Words | |
* A WER of 0% means perfect transcription | |
* A WER of 20% means approximately 1 in 5 words contains an error | |
### Character Error Rate (CER) | |
CER measures accuracy at the character level: | |
* More fine-grained than WER | |
* Better at capturing partial word matches | |
* Particularly useful for agglutinative languages like Bambara | |
### Combined Score | |
* Weighted average: 70% WER + 30% CER | |
* Provides a balanced evaluation of model performance | |
* Used as the primary ranking metric | |
""" | |
) | |
with gr.TabItem("π Submit New Results"): | |
gr.Markdown( | |
""" | |
### Submit a new model for evaluation | |
Upload a CSV file with the following format: | |
* Must contain exactly two columns: 'id' and 'text' | |
* The 'id' column should match the reference dataset IDs | |
* The 'text' column should contain your model's transcriptions | |
""" | |
) | |
with gr.Row(): | |
model_name_input = gr.Textbox( | |
label="Model Name", | |
placeholder="e.g., MALIBA-AI/bambara-asr" | |
) | |
gr.Markdown("*Use a descriptive name to identify your model*") | |
with gr.Row(): | |
csv_upload = gr.File( | |
label="Upload CSV File", | |
file_types=[".csv"] | |
) | |
gr.Markdown("*CSV with columns: id, text*") | |
submit_btn = gr.Button("Submit", variant="primary") | |
output_msg = gr.Textbox(label="Status", interactive=False) | |
leaderboard_display = gr.DataFrame( | |
label="Updated Leaderboard", | |
value=initial_leaderboard, | |
interactive=False | |
) | |
submit_btn.click( | |
fn=process_submission, | |
inputs=[model_name_input, csv_upload], | |
outputs=[output_msg, leaderboard_display] | |
) | |
with gr.TabItem("π Benchmark Dataset"): | |
gr.Markdown( | |
""" | |
## About the Benchmark Dataset | |
This leaderboard uses the **[sudoping01/bambara-speech-recognition-benchmark](https://huggingface.co/datasets/MALIBA-AI/bambara-speech-recognition-leaderboard)** dataset: | |
* Contains diverse Bambara speech samples | |
* Includes various speakers, accents, and dialects | |
* Covers different speech styles and recording conditions | |
* Transcribed and validated | |
### How to Generate Predictions | |
To submit results to this leaderboard: | |
1. Download the audio files from the benchmark dataset | |
2. Run your ASR model on the audio files | |
3. Generate a CSV file with 'id' and 'text' columns | |
4. Submit your results using the form in the "Submit New Results" tab | |
### Evaluation Guidelines | |
* Text is normalized (lowercase, punctuation removed) before metrics calculation | |
* Extreme outliers are capped to prevent skewing results | |
* All submissions are validated for format and completeness | |
NB: This work is a collaboration between MALIBA-AI, RobotsMali AI4D-LAB and Djelia | |
""" | |
) | |
gr.Markdown( | |
""" | |
--- | |
### About MALIBA-AI | |
**MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation** | |
*"No Malian Language Left Behind"* | |
This leaderboard is maintained by the MALIBA-AI initiative to track progress in Bambara speech recognition technology. | |
For more information, visit [MALIBA-AI on Hugging Face](https://huggingface.co/MALIBA-AI). | |
""" | |
) | |
if __name__ == "__main__": | |
demo.launch() |