sudoping01's picture
Update app.py
f81f1e2 verified
raw
history blame
14.4 kB
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
# Authentication setup
token = os.environ.get("HG_TOKEN")
print(f"Token exists: {token is not None}")
if token:
print(f"Token length: {len(token)}")
print(f"Token first few chars: {token[:4]}...")
login(token)
print("Loading dataset...")
try:
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default", use_auth_token=token)["eval"]
print(f"Successfully loaded dataset with {len(dataset)} samples")
references = {row["id"]: row["text"] for row in dataset}
except Exception as e:
print(f"Error loading dataset: {str(e)}")
# Fallback in case dataset can't be loaded
references = {}
print("WARNING: Using empty references dictionary due to dataset loading error")
# Initialize leaderboard file
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
def normalize_text(text):
"""
Normalize text by converting to lowercase, removing punctuation, and normalizing whitespace.
"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
# Remove punctuation, keeping spaces
text = re.sub(r'[^\w\s]', '', text)
# Normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""
Calculate WER and CER for each sample and return averages and per-sample results.
Uses both standard average and length-weighted average.
"""
per_sample_metrics = []
total_ref_words = 0
total_ref_chars = 0
# Process each sample
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
print(f"Warning: ID {id_val} not found in references")
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
continue
reference_words = reference.split()
reference_chars = list(reference)
# Skip very short references for more stable metrics
if len(reference_words) < 2:
print(f"Warning: Reference too short for ID {id_val}, skipping")
continue
# Store sample info for debugging (first few samples)
if len(per_sample_metrics) < 5:
print(f"ID: {id_val}")
print(f"Reference: '{reference}'")
print(f"Hypothesis: '{hypothesis}'")
print(f"Reference words: {reference_words}")
try:
# Calculate WER and CER
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
# Cap metrics at sensible values to prevent outliers
sample_wer = min(sample_wer, 2.0) # Cap at 200% WER
sample_cer = min(sample_cer, 2.0) # Cap at 200% CER
# For weighted calculations
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
if len(per_sample_metrics) < 5:
print(f"WER: {sample_wer}, CER: {sample_cer}")
per_sample_metrics.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not per_sample_metrics:
raise ValueError("No valid samples for WER/CER calculation")
# Calculate standard average metrics
avg_wer = sum(item["wer"] for item in per_sample_metrics) / len(per_sample_metrics)
avg_cer = sum(item["cer"] for item in per_sample_metrics) / len(per_sample_metrics)
# Calculate weighted average metrics based on reference length
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in per_sample_metrics) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in per_sample_metrics) / total_ref_chars
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
print(f"Processed {len(per_sample_metrics)} valid samples")
return avg_wer, avg_cer, weighted_wer, weighted_cer, per_sample_metrics
def styled_error(message):
"""Format error messages with red styling"""
return f"<div style='color: red; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #ffe0e0;'>{message}</div>"
def styled_success(message):
"""Format success messages with green styling"""
return f"<div style='color: green; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #e0ffe0;'>{message}</div>"
def styled_info(message):
"""Format informational messages with blue styling"""
return f"<div style='color: #004080; padding: 10px; border-radius: 5px; background-color: #e0f0ff;'>{message}</div>"
def process_submission(submitter_name, csv_file):
"""
Process a submission CSV, calculate metrics, and update the leaderboard.
Returns a status message and updated leaderboard.
"""
try:
# Validate submitter name
if not submitter_name or len(submitter_name.strip()) < 3:
return styled_error("Please provide a valid submitter name (at least 3 characters)"), None
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
print(f"Processing submission from {submitter_name} with {len(df)} rows")
# Basic validation
if len(df) == 0:
return styled_error("Error: Uploaded CSV is empty."), None
if len(df) < 10:
return styled_error("Error: Submission contains too few samples (minimum 10 required)."), None
if set(df.columns) != {"id", "text"}:
return styled_error(f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}"), None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return styled_error(f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}."), None
# Ensure text column contains strings
df["text"] = df["text"].astype(str)
# Check for valid references
if not references:
return styled_error("Error: Reference dataset could not be loaded. Please try again later."), None
# Check if IDs match the reference dataset
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return styled_error(f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}."), None
if extra_ids:
return styled_error(f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}."), None
# Check for suspicious submissions (high percentage of exact matches)
exact_matches = 0
for _, row in df.iterrows():
if normalize_text(row["text"]) == normalize_text(references[row["id"]]):
exact_matches += 1
exact_match_ratio = exact_matches / len(df)
if exact_match_ratio > 0.95: # If 95% exact matches, likely copying reference
return styled_error("Suspicious submission: Too many exact matches with reference texts."), None
# Calculate metrics
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# Debug information
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Weighted metrics - WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
print(f"Processed {len(detailed_results)} valid samples")
# Check for suspiciously low values
if avg_wer < 0.001 or weighted_wer < 0.001:
print("WARNING: WER is extremely low - likely an error")
return styled_error("Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV."), None
except Exception as e:
print(f"Error in metrics calculation: {str(e)}")
return styled_error(f"Error calculating metrics: {str(e)}"), None
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, weighted_wer, weighted_cer, len(detailed_results), timestamp]],
columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]
)
# Combine with existing leaderboard and keep only the best submission per submitter
combined = pd.concat([leaderboard, new_entry])
# Sort by WER (ascending) and get first entry for each submitter
best_entries = combined.sort_values("WER").groupby("submitter").first().reset_index()
# Sort the resulting dataframe by WER
updated_leaderboard = best_entries.sort_values("WER")
updated_leaderboard.to_csv(leaderboard_file, index=False)
# Create detailed metrics summary
metrics_summary = f"""
<h3>Submission Results</h3>
<table>
<tr><td><b>Submitter:</b></td><td>{submitter_name}</td></tr>
<tr><td><b>Word Error Rate (WER):</b></td><td>{avg_wer:.4f}</td></tr>
<tr><td><b>Character Error Rate (CER):</b></td><td>{avg_cer:.4f}</td></tr>
<tr><td><b>Weighted WER:</b></td><td>{weighted_wer:.4f}</td></tr>
<tr><td><b>Weighted CER:</b></td><td>{weighted_cer:.4f}</td></tr>
<tr><td><b>Samples Evaluated:</b></td><td>{len(detailed_results)}</td></tr>
<tr><td><b>Submission Time:</b></td><td>{timestamp}</td></tr>
</table>
"""
return styled_success(f"Submission processed successfully!") + styled_info(metrics_summary), updated_leaderboard
except Exception as e:
print(f"Error processing submission: {str(e)}")
return styled_error(f"Error processing submission: {str(e)}"), None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
## Metrics
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
We report both standard averages and length-weighted averages (where longer samples have more influence on the final score).
"""
)
with gr.Row():
with gr.Column(scale=1):
submitter = gr.Textbox(
label="Submitter Name or Model Name",
placeholder="e.g., MALIBA-AI/asr",
info="Name to appear on the leaderboard"
)
csv_upload = gr.File(
label="Upload CSV File",
file_types=[".csv"],
info="CSV must have 'id' and 'text' columns"
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
with gr.Accordion("Submission Format", open=False):
gr.Markdown(
"""
### CSV Format Requirements
Your CSV file must:
- Have exactly two columns: `id` and `text`
- The `id` column must match the IDs in the reference dataset
- The `text` column should contain your model's transcriptions
Example:
```
id,text
audio_001,n ye foro ka taa
audio_002,i ni ce
```
### Evaluation Process
Your submissions are evaluated by:
1. Normalizing both reference and predicted text (lowercase, punctuation removal)
2. Calculating Word Error Rate (WER) and Character Error Rate (CER)
3. Computing both simple average and length-weighted average
4. Ranking on the leaderboard by WER (lower is better)
Only your best submission is kept on the leaderboard.
"""
)
output_msg = gr.HTML(label="Status")
# Leaderboard display
with gr.Accordion("Leaderboard", open=True):
leaderboard_display = gr.DataFrame(
label="Current Standings",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
# Print startup message
print("Starting Bambara ASR Leaderboard app...")
# Launch the app
if __name__ == "__main__":
demo.launch(share=True)