|
import gradio as gr |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from jiwer import wer, cer |
|
import os |
|
from datetime import datetime |
|
import re |
|
|
|
from huggingface_hub import login |
|
|
|
|
|
token = os.environ.get("HG_TOKEN") |
|
print(f"Token exists: {token is not None}") |
|
if token: |
|
print(f"Token length: {len(token)}") |
|
print(f"Token first few chars: {token[:4]}...") |
|
login(token) |
|
|
|
print("Loading dataset...") |
|
try: |
|
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default", use_auth_token=token)["eval"] |
|
print(f"Successfully loaded dataset with {len(dataset)} samples") |
|
references = {row["id"]: row["text"] for row in dataset} |
|
except Exception as e: |
|
print(f"Error loading dataset: {str(e)}") |
|
|
|
references = {} |
|
print("WARNING: Using empty references dictionary due to dataset loading error") |
|
|
|
|
|
leaderboard_file = "leaderboard.csv" |
|
if not os.path.exists(leaderboard_file): |
|
pd.DataFrame(columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]).to_csv(leaderboard_file, index=False) |
|
else: |
|
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries") |
|
|
|
def normalize_text(text): |
|
""" |
|
Normalize text by converting to lowercase, removing punctuation, and normalizing whitespace. |
|
""" |
|
if not isinstance(text, str): |
|
text = str(text) |
|
|
|
text = text.lower() |
|
|
|
|
|
text = re.sub(r'[^\w\s]', '', text) |
|
|
|
|
|
text = re.sub(r'\s+', ' ', text).strip() |
|
|
|
return text |
|
|
|
def calculate_metrics(predictions_df): |
|
""" |
|
Calculate WER and CER for each sample and return averages and per-sample results. |
|
Uses both standard average and length-weighted average. |
|
""" |
|
per_sample_metrics = [] |
|
total_ref_words = 0 |
|
total_ref_chars = 0 |
|
|
|
|
|
for _, row in predictions_df.iterrows(): |
|
id_val = row["id"] |
|
if id_val not in references: |
|
print(f"Warning: ID {id_val} not found in references") |
|
continue |
|
|
|
reference = normalize_text(references[id_val]) |
|
hypothesis = normalize_text(row["text"]) |
|
|
|
if not reference or not hypothesis: |
|
print(f"Warning: Empty reference or hypothesis for ID {id_val}") |
|
continue |
|
|
|
reference_words = reference.split() |
|
reference_chars = list(reference) |
|
|
|
|
|
if len(reference_words) < 2: |
|
print(f"Warning: Reference too short for ID {id_val}, skipping") |
|
continue |
|
|
|
|
|
if len(per_sample_metrics) < 5: |
|
print(f"ID: {id_val}") |
|
print(f"Reference: '{reference}'") |
|
print(f"Hypothesis: '{hypothesis}'") |
|
print(f"Reference words: {reference_words}") |
|
|
|
try: |
|
|
|
sample_wer = wer(reference, hypothesis) |
|
sample_cer = cer(reference, hypothesis) |
|
|
|
|
|
sample_wer = min(sample_wer, 2.0) |
|
sample_cer = min(sample_cer, 2.0) |
|
|
|
|
|
total_ref_words += len(reference_words) |
|
total_ref_chars += len(reference_chars) |
|
|
|
if len(per_sample_metrics) < 5: |
|
print(f"WER: {sample_wer}, CER: {sample_cer}") |
|
|
|
per_sample_metrics.append({ |
|
"id": id_val, |
|
"reference": reference, |
|
"hypothesis": hypothesis, |
|
"ref_word_count": len(reference_words), |
|
"ref_char_count": len(reference_chars), |
|
"wer": sample_wer, |
|
"cer": sample_cer |
|
}) |
|
except Exception as e: |
|
print(f"Error calculating metrics for ID {id_val}: {str(e)}") |
|
|
|
if not per_sample_metrics: |
|
raise ValueError("No valid samples for WER/CER calculation") |
|
|
|
|
|
avg_wer = sum(item["wer"] for item in per_sample_metrics) / len(per_sample_metrics) |
|
avg_cer = sum(item["cer"] for item in per_sample_metrics) / len(per_sample_metrics) |
|
|
|
|
|
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in per_sample_metrics) / total_ref_words |
|
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in per_sample_metrics) / total_ref_chars |
|
|
|
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}") |
|
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}") |
|
print(f"Processed {len(per_sample_metrics)} valid samples") |
|
|
|
return avg_wer, avg_cer, weighted_wer, weighted_cer, per_sample_metrics |
|
|
|
def styled_error(message): |
|
"""Format error messages with red styling""" |
|
return f"<div style='color: red; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #ffe0e0;'>{message}</div>" |
|
|
|
def styled_success(message): |
|
"""Format success messages with green styling""" |
|
return f"<div style='color: green; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #e0ffe0;'>{message}</div>" |
|
|
|
def styled_info(message): |
|
"""Format informational messages with blue styling""" |
|
return f"<div style='color: #004080; padding: 10px; border-radius: 5px; background-color: #e0f0ff;'>{message}</div>" |
|
|
|
def process_submission(submitter_name, csv_file): |
|
""" |
|
Process a submission CSV, calculate metrics, and update the leaderboard. |
|
Returns a status message and updated leaderboard. |
|
""" |
|
try: |
|
|
|
if not submitter_name or len(submitter_name.strip()) < 3: |
|
return styled_error("Please provide a valid submitter name (at least 3 characters)"), None |
|
|
|
|
|
df = pd.read_csv(csv_file) |
|
print(f"Processing submission from {submitter_name} with {len(df)} rows") |
|
|
|
|
|
if len(df) == 0: |
|
return styled_error("Error: Uploaded CSV is empty."), None |
|
|
|
if len(df) < 10: |
|
return styled_error("Error: Submission contains too few samples (minimum 10 required)."), None |
|
|
|
if set(df.columns) != {"id", "text"}: |
|
return styled_error(f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}"), None |
|
|
|
if df["id"].duplicated().any(): |
|
dup_ids = df[df["id"].duplicated()]["id"].unique() |
|
return styled_error(f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}."), None |
|
|
|
|
|
df["text"] = df["text"].astype(str) |
|
|
|
|
|
if not references: |
|
return styled_error("Error: Reference dataset could not be loaded. Please try again later."), None |
|
|
|
|
|
missing_ids = set(references.keys()) - set(df["id"]) |
|
extra_ids = set(df["id"]) - set(references.keys()) |
|
|
|
if missing_ids: |
|
return styled_error(f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}."), None |
|
|
|
if extra_ids: |
|
return styled_error(f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}."), None |
|
|
|
|
|
exact_matches = 0 |
|
for _, row in df.iterrows(): |
|
if normalize_text(row["text"]) == normalize_text(references[row["id"]]): |
|
exact_matches += 1 |
|
|
|
exact_match_ratio = exact_matches / len(df) |
|
if exact_match_ratio > 0.95: |
|
return styled_error("Suspicious submission: Too many exact matches with reference texts."), None |
|
|
|
|
|
try: |
|
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df) |
|
|
|
|
|
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}") |
|
print(f"Weighted metrics - WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}") |
|
print(f"Processed {len(detailed_results)} valid samples") |
|
|
|
|
|
if avg_wer < 0.001 or weighted_wer < 0.001: |
|
print("WARNING: WER is extremely low - likely an error") |
|
return styled_error("Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV."), None |
|
|
|
except Exception as e: |
|
print(f"Error in metrics calculation: {str(e)}") |
|
return styled_error(f"Error calculating metrics: {str(e)}"), None |
|
|
|
|
|
leaderboard = pd.read_csv(leaderboard_file) |
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
|
|
new_entry = pd.DataFrame( |
|
[[submitter_name, avg_wer, avg_cer, weighted_wer, weighted_cer, len(detailed_results), timestamp]], |
|
columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"] |
|
) |
|
|
|
|
|
combined = pd.concat([leaderboard, new_entry]) |
|
|
|
best_entries = combined.sort_values("WER").groupby("submitter").first().reset_index() |
|
|
|
updated_leaderboard = best_entries.sort_values("WER") |
|
updated_leaderboard.to_csv(leaderboard_file, index=False) |
|
|
|
|
|
metrics_summary = f""" |
|
<h3>Submission Results</h3> |
|
<table> |
|
<tr><td><b>Submitter:</b></td><td>{submitter_name}</td></tr> |
|
<tr><td><b>Word Error Rate (WER):</b></td><td>{avg_wer:.4f}</td></tr> |
|
<tr><td><b>Character Error Rate (CER):</b></td><td>{avg_cer:.4f}</td></tr> |
|
<tr><td><b>Weighted WER:</b></td><td>{weighted_wer:.4f}</td></tr> |
|
<tr><td><b>Weighted CER:</b></td><td>{weighted_cer:.4f}</td></tr> |
|
<tr><td><b>Samples Evaluated:</b></td><td>{len(detailed_results)}</td></tr> |
|
<tr><td><b>Submission Time:</b></td><td>{timestamp}</td></tr> |
|
</table> |
|
""" |
|
|
|
return styled_success(f"Submission processed successfully!") + styled_info(metrics_summary), updated_leaderboard |
|
|
|
except Exception as e: |
|
print(f"Error processing submission: {str(e)}") |
|
return styled_error(f"Error processing submission: {str(e)}"), None |
|
|
|
|
|
with gr.Blocks(title="Bambara ASR Leaderboard") as demo: |
|
gr.Markdown( |
|
""" |
|
# Bambara ASR Leaderboard |
|
|
|
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions. |
|
The 'id's must match those in the dataset. |
|
|
|
## Metrics |
|
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy |
|
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy |
|
|
|
We report both standard averages and length-weighted averages (where longer samples have more influence on the final score). |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
submitter = gr.Textbox( |
|
label="Submitter Name or Model Name", |
|
placeholder="e.g., MALIBA-AI/asr", |
|
info="Name to appear on the leaderboard" |
|
) |
|
csv_upload = gr.File( |
|
label="Upload CSV File", |
|
file_types=[".csv"], |
|
info="CSV must have 'id' and 'text' columns" |
|
) |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
|
|
with gr.Column(scale=2): |
|
with gr.Accordion("Submission Format", open=False): |
|
gr.Markdown( |
|
""" |
|
### CSV Format Requirements |
|
|
|
Your CSV file must: |
|
- Have exactly two columns: `id` and `text` |
|
- The `id` column must match the IDs in the reference dataset |
|
- The `text` column should contain your model's transcriptions |
|
|
|
Example: |
|
``` |
|
id,text |
|
audio_001,n ye foro ka taa |
|
audio_002,i ni ce |
|
``` |
|
|
|
### Evaluation Process |
|
|
|
Your submissions are evaluated by: |
|
1. Normalizing both reference and predicted text (lowercase, punctuation removal) |
|
2. Calculating Word Error Rate (WER) and Character Error Rate (CER) |
|
3. Computing both simple average and length-weighted average |
|
4. Ranking on the leaderboard by WER (lower is better) |
|
|
|
Only your best submission is kept on the leaderboard. |
|
""" |
|
) |
|
|
|
output_msg = gr.HTML(label="Status") |
|
|
|
|
|
with gr.Accordion("Leaderboard", open=True): |
|
leaderboard_display = gr.DataFrame( |
|
label="Current Standings", |
|
value=pd.read_csv(leaderboard_file), |
|
interactive=False |
|
) |
|
|
|
submit_btn.click( |
|
fn=process_submission, |
|
inputs=[submitter, csv_upload], |
|
outputs=[output_msg, leaderboard_display] |
|
) |
|
|
|
|
|
print("Starting Bambara ASR Leaderboard app...") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |