File size: 14,395 Bytes
9ba8fab 3769468 9ba8fab 3769468 6960dc6 da12542 f81f1e2 da12542 f81f1e2 da12542 ddc83ff f81f1e2 9ba8fab f81f1e2 9ba8fab f81f1e2 ddc83ff 3769468 f81f1e2 3769468 d415750 3769468 ddc83ff f81f1e2 ddc83ff f81f1e2 ddc83ff 3769468 f81f1e2 d415750 f81f1e2 3769468 ddc83ff 3769468 d415750 3769468 d415750 3769468 ddc83ff 3769468 d415750 f81f1e2 d415750 f81f1e2 ddc83ff d415750 3769468 ddc83ff 3769468 ddc83ff f81f1e2 ddc83ff f81f1e2 3769468 d415750 f81f1e2 3769468 d415750 f81f1e2 d415750 ddc83ff f81f1e2 9ba8fab f81f1e2 9ba8fab f81f1e2 ddc83ff 9ba8fab ddc83ff d415750 f81f1e2 3769468 f81f1e2 d415750 29c8f24 f81f1e2 d415750 9ba8fab d415750 f81f1e2 ddc83ff 3769468 d415750 3769468 f81f1e2 d415750 3769468 f81f1e2 6960dc6 f81f1e2 d415750 f81f1e2 d415750 ddc83ff d415750 f81f1e2 d415750 ddc83ff f81f1e2 ddc83ff f81f1e2 d415750 ddc83ff f81f1e2 9ba8fab ddc83ff 9ba8fab f81f1e2 9ba8fab f81f1e2 9ba8fab f81f1e2 3769468 9ba8fab ddc83ff f81f1e2 c726970 ddc83ff d415750 9ba8fab d415750 f81f1e2 d415750 f81f1e2 9ba8fab d415750 9ba8fab f81f1e2 d415750 9ba8fab ddc83ff d415750 ddc83ff 3769468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
# Authentication setup
token = os.environ.get("HG_TOKEN")
print(f"Token exists: {token is not None}")
if token:
print(f"Token length: {len(token)}")
print(f"Token first few chars: {token[:4]}...")
login(token)
print("Loading dataset...")
try:
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default", use_auth_token=token)["eval"]
print(f"Successfully loaded dataset with {len(dataset)} samples")
references = {row["id"]: row["text"] for row in dataset}
except Exception as e:
print(f"Error loading dataset: {str(e)}")
# Fallback in case dataset can't be loaded
references = {}
print("WARNING: Using empty references dictionary due to dataset loading error")
# Initialize leaderboard file
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
def normalize_text(text):
"""
Normalize text by converting to lowercase, removing punctuation, and normalizing whitespace.
"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
# Remove punctuation, keeping spaces
text = re.sub(r'[^\w\s]', '', text)
# Normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""
Calculate WER and CER for each sample and return averages and per-sample results.
Uses both standard average and length-weighted average.
"""
per_sample_metrics = []
total_ref_words = 0
total_ref_chars = 0
# Process each sample
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
print(f"Warning: ID {id_val} not found in references")
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
continue
reference_words = reference.split()
reference_chars = list(reference)
# Skip very short references for more stable metrics
if len(reference_words) < 2:
print(f"Warning: Reference too short for ID {id_val}, skipping")
continue
# Store sample info for debugging (first few samples)
if len(per_sample_metrics) < 5:
print(f"ID: {id_val}")
print(f"Reference: '{reference}'")
print(f"Hypothesis: '{hypothesis}'")
print(f"Reference words: {reference_words}")
try:
# Calculate WER and CER
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
# Cap metrics at sensible values to prevent outliers
sample_wer = min(sample_wer, 2.0) # Cap at 200% WER
sample_cer = min(sample_cer, 2.0) # Cap at 200% CER
# For weighted calculations
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
if len(per_sample_metrics) < 5:
print(f"WER: {sample_wer}, CER: {sample_cer}")
per_sample_metrics.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not per_sample_metrics:
raise ValueError("No valid samples for WER/CER calculation")
# Calculate standard average metrics
avg_wer = sum(item["wer"] for item in per_sample_metrics) / len(per_sample_metrics)
avg_cer = sum(item["cer"] for item in per_sample_metrics) / len(per_sample_metrics)
# Calculate weighted average metrics based on reference length
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in per_sample_metrics) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in per_sample_metrics) / total_ref_chars
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
print(f"Processed {len(per_sample_metrics)} valid samples")
return avg_wer, avg_cer, weighted_wer, weighted_cer, per_sample_metrics
def styled_error(message):
"""Format error messages with red styling"""
return f"<div style='color: red; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #ffe0e0;'>{message}</div>"
def styled_success(message):
"""Format success messages with green styling"""
return f"<div style='color: green; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #e0ffe0;'>{message}</div>"
def styled_info(message):
"""Format informational messages with blue styling"""
return f"<div style='color: #004080; padding: 10px; border-radius: 5px; background-color: #e0f0ff;'>{message}</div>"
def process_submission(submitter_name, csv_file):
"""
Process a submission CSV, calculate metrics, and update the leaderboard.
Returns a status message and updated leaderboard.
"""
try:
# Validate submitter name
if not submitter_name or len(submitter_name.strip()) < 3:
return styled_error("Please provide a valid submitter name (at least 3 characters)"), None
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
print(f"Processing submission from {submitter_name} with {len(df)} rows")
# Basic validation
if len(df) == 0:
return styled_error("Error: Uploaded CSV is empty."), None
if len(df) < 10:
return styled_error("Error: Submission contains too few samples (minimum 10 required)."), None
if set(df.columns) != {"id", "text"}:
return styled_error(f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}"), None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return styled_error(f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}."), None
# Ensure text column contains strings
df["text"] = df["text"].astype(str)
# Check for valid references
if not references:
return styled_error("Error: Reference dataset could not be loaded. Please try again later."), None
# Check if IDs match the reference dataset
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return styled_error(f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}."), None
if extra_ids:
return styled_error(f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}."), None
# Check for suspicious submissions (high percentage of exact matches)
exact_matches = 0
for _, row in df.iterrows():
if normalize_text(row["text"]) == normalize_text(references[row["id"]]):
exact_matches += 1
exact_match_ratio = exact_matches / len(df)
if exact_match_ratio > 0.95: # If 95% exact matches, likely copying reference
return styled_error("Suspicious submission: Too many exact matches with reference texts."), None
# Calculate metrics
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# Debug information
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Weighted metrics - WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
print(f"Processed {len(detailed_results)} valid samples")
# Check for suspiciously low values
if avg_wer < 0.001 or weighted_wer < 0.001:
print("WARNING: WER is extremely low - likely an error")
return styled_error("Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV."), None
except Exception as e:
print(f"Error in metrics calculation: {str(e)}")
return styled_error(f"Error calculating metrics: {str(e)}"), None
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, weighted_wer, weighted_cer, len(detailed_results), timestamp]],
columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]
)
# Combine with existing leaderboard and keep only the best submission per submitter
combined = pd.concat([leaderboard, new_entry])
# Sort by WER (ascending) and get first entry for each submitter
best_entries = combined.sort_values("WER").groupby("submitter").first().reset_index()
# Sort the resulting dataframe by WER
updated_leaderboard = best_entries.sort_values("WER")
updated_leaderboard.to_csv(leaderboard_file, index=False)
# Create detailed metrics summary
metrics_summary = f"""
<h3>Submission Results</h3>
<table>
<tr><td><b>Submitter:</b></td><td>{submitter_name}</td></tr>
<tr><td><b>Word Error Rate (WER):</b></td><td>{avg_wer:.4f}</td></tr>
<tr><td><b>Character Error Rate (CER):</b></td><td>{avg_cer:.4f}</td></tr>
<tr><td><b>Weighted WER:</b></td><td>{weighted_wer:.4f}</td></tr>
<tr><td><b>Weighted CER:</b></td><td>{weighted_cer:.4f}</td></tr>
<tr><td><b>Samples Evaluated:</b></td><td>{len(detailed_results)}</td></tr>
<tr><td><b>Submission Time:</b></td><td>{timestamp}</td></tr>
</table>
"""
return styled_success(f"Submission processed successfully!") + styled_info(metrics_summary), updated_leaderboard
except Exception as e:
print(f"Error processing submission: {str(e)}")
return styled_error(f"Error processing submission: {str(e)}"), None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
## Metrics
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
We report both standard averages and length-weighted averages (where longer samples have more influence on the final score).
"""
)
with gr.Row():
with gr.Column(scale=1):
submitter = gr.Textbox(
label="Submitter Name or Model Name",
placeholder="e.g., MALIBA-AI/asr",
info="Name to appear on the leaderboard"
)
csv_upload = gr.File(
label="Upload CSV File",
file_types=[".csv"],
info="CSV must have 'id' and 'text' columns"
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
with gr.Accordion("Submission Format", open=False):
gr.Markdown(
"""
### CSV Format Requirements
Your CSV file must:
- Have exactly two columns: `id` and `text`
- The `id` column must match the IDs in the reference dataset
- The `text` column should contain your model's transcriptions
Example:
```
id,text
audio_001,n ye foro ka taa
audio_002,i ni ce
```
### Evaluation Process
Your submissions are evaluated by:
1. Normalizing both reference and predicted text (lowercase, punctuation removal)
2. Calculating Word Error Rate (WER) and Character Error Rate (CER)
3. Computing both simple average and length-weighted average
4. Ranking on the leaderboard by WER (lower is better)
Only your best submission is kept on the leaderboard.
"""
)
output_msg = gr.HTML(label="Status")
# Leaderboard display
with gr.Accordion("Leaderboard", open=True):
leaderboard_display = gr.DataFrame(
label="Current Standings",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
# Print startup message
print("Starting Bambara ASR Leaderboard app...")
# Launch the app
if __name__ == "__main__":
demo.launch(share=True) |