sudoping01's picture
Update app.py
60c60cf verified
raw
history blame
4.2 kB
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
# Load the Bambara ASR dataset
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}
# Load or initialize the leaderboard
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
def preprocess_text(text):
"""
Custom text preprocessing to handle Bambara text properly
"""
# Convert to string in case it's not
text = str(text)
# Remove punctuation
for punct in [',', '.', '!', '?', ';', ':', '"', "'"]:
text = text.replace(punct, '')
# Convert to lowercase
text = text.lower()
# Normalize whitespace
text = ' '.join(text.split())
return text
def process_submission(submitter_name, csv_file):
try:
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
if set(df.columns) != {"id", "text"}:
return "Error: CSV must contain exactly 'id' and 'text' columns.", None
if df["id"].duplicated().any():
return "Error: Duplicate 'id's found in the CSV.", None
if set(df["id"]) != set(references.keys()):
return "Error: CSV 'id's must match the dataset 'id's.", None
# Calculate WER and CER for each prediction
wers, cers = [], []
for _, row in df.iterrows():
ref = preprocess_text(references[row["id"]])
pred = preprocess_text(row["text"])
# Check if either text is empty after preprocessing
if not ref or not pred:
continue
# Calculate metrics with no transform (we did preprocessing already)
# This avoids the error with jiwer's transform
wers.append(wer(ref, pred))
cers.append(cer(ref, pred))
# Compute average WER and CER
if not wers or not cers:
return "Error: No valid text pairs for evaluation after preprocessing.", None
avg_wer = sum(wers) / len(wers)
avg_cer = sum(cers) / len(cers)
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
return "Submission processed successfully!", leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
- **WER**: Word Error Rate (lower is better).
- **CER**: Character Error Rate (lower is better).
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Leaderboard",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
demo.launch(share=True)