import gradio as gr import pandas as pd from datasets import load_dataset from jiwer import wer, cer import os from datetime import datetime # Load the Bambara ASR dataset dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"] references = {row["id"]: row["text"] for row in dataset} # Load or initialize the leaderboard leaderboard_file = "leaderboard.csv" if not os.path.exists(leaderboard_file): pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False) def preprocess_text(text): """ Custom text preprocessing to handle Bambara text properly """ # Convert to string in case it's not text = str(text) # Remove punctuation for punct in [',', '.', '!', '?', ';', ':', '"', "'"]: text = text.replace(punct, '') # Convert to lowercase text = text.lower() # Normalize whitespace text = ' '.join(text.split()) return text def process_submission(submitter_name, csv_file): try: # Read and validate the uploaded CSV df = pd.read_csv(csv_file) if set(df.columns) != {"id", "text"}: return "Error: CSV must contain exactly 'id' and 'text' columns.", None if df["id"].duplicated().any(): return "Error: Duplicate 'id's found in the CSV.", None if set(df["id"]) != set(references.keys()): return "Error: CSV 'id's must match the dataset 'id's.", None # Calculate WER and CER for each prediction wers, cers = [], [] for _, row in df.iterrows(): ref = preprocess_text(references[row["id"]]) pred = preprocess_text(row["text"]) # Check if either text is empty after preprocessing if not ref or not pred: continue # Calculate metrics with no transform (we did preprocessing already) # This avoids the error with jiwer's transform wers.append(wer(ref, pred)) cers.append(cer(ref, pred)) # Compute average WER and CER if not wers or not cers: return "Error: No valid text pairs for evaluation after preprocessing.", None avg_wer = sum(wers) / len(wers) avg_cer = sum(cers) / len(cers) # Update the leaderboard leaderboard = pd.read_csv(leaderboard_file) timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") new_entry = pd.DataFrame( [[submitter_name, avg_wer, avg_cer, timestamp]], columns=["submitter", "WER", "CER", "timestamp"] ) leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER") leaderboard.to_csv(leaderboard_file, index=False) return "Submission processed successfully!", leaderboard except Exception as e: return f"Error processing submission: {str(e)}", None # Create the Gradio interface with gr.Blocks(title="Bambara ASR Leaderboard") as demo: gr.Markdown( """ # Bambara ASR Leaderboard Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions. The 'id's must match those in the dataset. [View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset). - **WER**: Word Error Rate (lower is better). - **CER**: Character Error Rate (lower is better). """ ) with gr.Row(): submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr") csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"]) submit_btn = gr.Button("Submit") output_msg = gr.Textbox(label="Status", interactive=False) leaderboard_display = gr.DataFrame( label="Leaderboard", value=pd.read_csv(leaderboard_file), interactive=False ) submit_btn.click( fn=process_submission, inputs=[submitter, csv_upload], outputs=[output_msg, leaderboard_display] ) demo.launch(share=True)