File size: 3,560 Bytes
9ba8fab
 
 
6960dc6
9ba8fab
 
 
6960dc6
 
 
 
 
 
 
5d4699a
9ba8fab
 
 
5d4699a
9ba8fab
 
 
 
 
 
5d4699a
9ba8fab
29c8f24
 
9ba8fab
 
 
 
6960dc6
5d4699a
9ba8fab
3efa4cc
6960dc6
 
 
 
 
5d4699a
9ba8fab
 
 
5d4699a
9ba8fab
 
 
 
 
 
 
 
 
 
 
 
 
5d4699a
9ba8fab
 
 
 
6960dc6
 
9ba8fab
6960dc6
9ba8fab
 
 
 
 
3bdb09a
9ba8fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29c8f24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer, transforms
import os
from datetime import datetime

# Define text normalization transform
transform = transforms.Compose([
    transforms.RemovePunctuation(),
    transforms.ToLowerCase(),
    transforms.RemoveWhiteSpace(replace_by_space=True),
])

# Load the Bambara ASR dataset
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}

# Load or initialize the leaderboard
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
    pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)

def process_submission(submitter_name, csv_file):
    try:
        # Read and validate the uploaded CSV
        df = pd.read_csv(csv_file)
        if set(df.columns) != {"id", "text"}:
            return "Error: CSV must contain exactly 'id' and 'text' columns.", None
        if df["id"].duplicated().any():
            return "Error: Duplicate 'id's found in the CSV.", None
        if set(df["id"]) != set(references.keys()):
            return "Error: CSV 'id's must match the dataset 'id's.", None
        
        # Calculate WER and CER for each prediction
        wers, cers = [], []
        for _, row in df.iterrows():
            ref = references[row["id"]]
            pred = row["text"]
            wers.append(wer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
            cers.append(cer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
        
        # Compute average WER and CER
        avg_wer = sum(wers) / len(wers)
        avg_cer = sum(cers) / len(cers)
        
        # Update the leaderboard
        leaderboard = pd.read_csv(leaderboard_file)
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        new_entry = pd.DataFrame(
            [[submitter_name, avg_wer, avg_cer, timestamp]],
            columns=["submitter", "WER", "CER", "timestamp"]
        )
        leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
        leaderboard.to_csv(leaderboard_file, index=False)
        
        return "Submission processed successfully!", leaderboard
    except Exception as e:
        return f"Error processing submission: {str(e)}", None

# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
    gr.Markdown(
        """
        # Bambara ASR Leaderboard
        Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions. 
        The 'id's must match those in the dataset. 
        [View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
        
        - **WER**: Word Error Rate (lower is better).
        - **CER**: Character Error Rate (lower is better).
        """
    )
    with gr.Row():
        submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
        csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
    submit_btn = gr.Button("Submit")
    output_msg = gr.Textbox(label="Status", interactive=False)
    leaderboard_display = gr.DataFrame(
        label="Leaderboard",
        value=pd.read_csv(leaderboard_file),
        interactive=False
    )
    
    submit_btn.click(
        fn=process_submission,
        inputs=[submitter, csv_upload],
        outputs=[output_msg, leaderboard_display]
    )

demo.launch(share=True)