File size: 3,560 Bytes
9ba8fab 6960dc6 9ba8fab 6960dc6 5d4699a 9ba8fab 5d4699a 9ba8fab 5d4699a 9ba8fab 29c8f24 9ba8fab 6960dc6 5d4699a 9ba8fab 3efa4cc 6960dc6 5d4699a 9ba8fab 5d4699a 9ba8fab 5d4699a 9ba8fab 6960dc6 9ba8fab 6960dc6 9ba8fab 3bdb09a 9ba8fab 29c8f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer, transforms
import os
from datetime import datetime
# Define text normalization transform
transform = transforms.Compose([
transforms.RemovePunctuation(),
transforms.ToLowerCase(),
transforms.RemoveWhiteSpace(replace_by_space=True),
])
# Load the Bambara ASR dataset
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}
# Load or initialize the leaderboard
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
def process_submission(submitter_name, csv_file):
try:
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
if set(df.columns) != {"id", "text"}:
return "Error: CSV must contain exactly 'id' and 'text' columns.", None
if df["id"].duplicated().any():
return "Error: Duplicate 'id's found in the CSV.", None
if set(df["id"]) != set(references.keys()):
return "Error: CSV 'id's must match the dataset 'id's.", None
# Calculate WER and CER for each prediction
wers, cers = [], []
for _, row in df.iterrows():
ref = references[row["id"]]
pred = row["text"]
wers.append(wer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
cers.append(cer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
# Compute average WER and CER
avg_wer = sum(wers) / len(wers)
avg_cer = sum(cers) / len(cers)
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
return "Submission processed successfully!", leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
- **WER**: Word Error Rate (lower is better).
- **CER**: Character Error Rate (lower is better).
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Leaderboard",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
demo.launch(share=True) |