Update app.py
Browse files
app.py
CHANGED
@@ -25,21 +25,35 @@ def process_submission(submitter_name, csv_file):
|
|
25 |
try:
|
26 |
# Read and validate the uploaded CSV
|
27 |
df = pd.read_csv(csv_file)
|
|
|
28 |
if set(df.columns) != {"id", "text"}:
|
29 |
return "Error: CSV must contain exactly 'id' and 'text' columns.", None
|
|
|
30 |
if df["id"].duplicated().any():
|
31 |
return "Error: Duplicate 'id's found in the CSV.", None
|
|
|
32 |
if set(df["id"]) != set(references.keys()):
|
33 |
return "Error: CSV 'id's must match the dataset 'id's.", None
|
34 |
-
|
35 |
# Calculate WER and CER for each prediction
|
36 |
wers, cers = [], []
|
37 |
-
for _, row in df.iterrows():
|
38 |
-
ref = references[row["id"]]
|
39 |
-
pred = row["text"]
|
40 |
-
wers.append(wer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
|
41 |
-
cers.append(cer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Compute average WER and CER
|
44 |
avg_wer = sum(wers) / len(wers)
|
45 |
avg_cer = sum(cers) / len(cers)
|
@@ -55,6 +69,7 @@ def process_submission(submitter_name, csv_file):
|
|
55 |
leaderboard.to_csv(leaderboard_file, index=False)
|
56 |
|
57 |
return "Submission processed successfully!", leaderboard
|
|
|
58 |
except Exception as e:
|
59 |
return f"Error processing submission: {str(e)}", None
|
60 |
|
@@ -63,17 +78,18 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
63 |
gr.Markdown(
|
64 |
"""
|
65 |
# Bambara ASR Leaderboard
|
66 |
-
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
67 |
-
The 'id's must match those in the dataset.
|
68 |
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
|
69 |
-
|
70 |
- **WER**: Word Error Rate (lower is better).
|
71 |
- **CER**: Character Error Rate (lower is better).
|
72 |
"""
|
73 |
)
|
|
|
74 |
with gr.Row():
|
75 |
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
76 |
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
|
|
77 |
submit_btn = gr.Button("Submit")
|
78 |
output_msg = gr.Textbox(label="Status", interactive=False)
|
79 |
leaderboard_display = gr.DataFrame(
|
|
|
25 |
try:
|
26 |
# Read and validate the uploaded CSV
|
27 |
df = pd.read_csv(csv_file)
|
28 |
+
|
29 |
if set(df.columns) != {"id", "text"}:
|
30 |
return "Error: CSV must contain exactly 'id' and 'text' columns.", None
|
31 |
+
|
32 |
if df["id"].duplicated().any():
|
33 |
return "Error: Duplicate 'id's found in the CSV.", None
|
34 |
+
|
35 |
if set(df["id"]) != set(references.keys()):
|
36 |
return "Error: CSV 'id's must match the dataset 'id's.", None
|
37 |
+
|
38 |
# Calculate WER and CER for each prediction
|
39 |
wers, cers = [], []
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
for _, row in df.iterrows():
|
42 |
+
ref = str(references[row["id"]]) # Ensure reference is a string
|
43 |
+
pred = str(row["text"]) # Ensure prediction is a string
|
44 |
+
|
45 |
+
# Apply transformation directly to the text strings before WER/CER calculation
|
46 |
+
ref_transformed = " ".join(transform(ref).split())
|
47 |
+
pred_transformed = " ".join(transform(pred).split())
|
48 |
+
|
49 |
+
# Check if transformation produced valid result
|
50 |
+
if not ref_transformed or not pred_transformed:
|
51 |
+
return f"Error: Empty string after transformation for id {row['id']}", None
|
52 |
+
|
53 |
+
# Calculate metrics without transform parameter (we pre-transformed)
|
54 |
+
wers.append(wer(ref_transformed, pred_transformed))
|
55 |
+
cers.append(cer(ref_transformed, pred_transformed))
|
56 |
+
|
57 |
# Compute average WER and CER
|
58 |
avg_wer = sum(wers) / len(wers)
|
59 |
avg_cer = sum(cers) / len(cers)
|
|
|
69 |
leaderboard.to_csv(leaderboard_file, index=False)
|
70 |
|
71 |
return "Submission processed successfully!", leaderboard
|
72 |
+
|
73 |
except Exception as e:
|
74 |
return f"Error processing submission: {str(e)}", None
|
75 |
|
|
|
78 |
gr.Markdown(
|
79 |
"""
|
80 |
# Bambara ASR Leaderboard
|
81 |
+
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
82 |
+
The 'id's must match those in the dataset.
|
83 |
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
|
|
|
84 |
- **WER**: Word Error Rate (lower is better).
|
85 |
- **CER**: Character Error Rate (lower is better).
|
86 |
"""
|
87 |
)
|
88 |
+
|
89 |
with gr.Row():
|
90 |
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
91 |
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
92 |
+
|
93 |
submit_btn = gr.Button("Submit")
|
94 |
output_msg = gr.Textbox(label="Status", interactive=False)
|
95 |
leaderboard_display = gr.DataFrame(
|