File size: 10,823 Bytes
9ba8fab 3769468 9ba8fab 3769468 6960dc6 da12542 f81f1e2 da12542 f81f1e2 da12542 ddc83ff f81f1e2 74d890a f81f1e2 74d890a 9ba8fab f81f1e2 9ba8fab d4aa692 ddc83ff 3769468 d4aa692 3769468 d415750 d4aa692 3769468 ddc83ff f81f1e2 ddc83ff f81f1e2 ddc83ff 3769468 d4aa692 f81f1e2 d415750 3769468 ddc83ff 3769468 d415750 3769468 d415750 d4aa692 3769468 ddc83ff 3769468 d415750 d4aa692 d415750 d4aa692 f81f1e2 d4aa692 ddc83ff d4aa692 d415750 d4aa692 3769468 ddc83ff 3769468 ddc83ff f81f1e2 d4aa692 ddc83ff d4aa692 3769468 d415750 f81f1e2 3769468 d415750 d4aa692 d415750 d4aa692 f81f1e2 d4aa692 f81f1e2 d4aa692 f81f1e2 d4aa692 f81f1e2 d4aa692 9ba8fab ddc83ff 9ba8fab ddc83ff d415750 3769468 d4aa692 d415750 29c8f24 d4aa692 d415750 9ba8fab d415750 d4aa692 ddc83ff 3769468 d415750 3769468 d4aa692 d415750 3769468 d4aa692 f81f1e2 d4aa692 d415750 f81f1e2 d415750 ddc83ff d415750 f81f1e2 d415750 ddc83ff d4aa692 ddc83ff d4aa692 d415750 ddc83ff d4aa692 9ba8fab ddc83ff 9ba8fab d4aa692 9ba8fab d4aa692 9ba8fab d4aa692 3769468 9ba8fab ddc83ff d4aa692 c726970 ddc83ff d415750 9ba8fab d415750 f81f1e2 33f8987 9ba8fab d415750 33f8987 d4aa692 33f8987 9ba8fab ddc83ff d415750 ddc83ff 3769468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
# Authentication setup
token = os.environ.get("HG_TOKEN")
print(f"Token exists: {token is not None}")
if token:
print(f"Token length: {len(token)}")
print(f"Token first few chars: {token[:4]}...")
login(token)
print("Loading dataset...")
try:
# Try loading without use_auth_token parameter since it's not accepted
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
print(f"Successfully loaded dataset with {len(dataset)} samples")
references = {row["id"]: row["text"] for row in dataset}
except Exception as e:
print(f"Error loading dataset: {str(e)}")
try:
# Second attempt with token passed differently
from huggingface_hub import HfApi
api = HfApi(token=token)
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
print(f"Successfully loaded dataset with {len(dataset)} samples")
references = {row["id"]: row["text"] for row in dataset}
except Exception as e2:
print(f"Second attempt error: {str(e2)}")
# Fallback in case dataset can't be loaded
references = {}
print("WARNING: Using empty references dictionary due to dataset loading error")
# Initialize leaderboard file
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
def normalize_text(text):
"""
Normalize text for WER/CER calculation:
- Convert to lowercase
- Remove punctuation
- Replace multiple spaces with single space
- Strip leading/trailing spaces
"""
if not isinstance(text, str):
text = str(text)
# Convert to lowercase
text = text.lower()
# Remove punctuation, keeping spaces
text = re.sub(r'[^\w\s]', '', text)
# Normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
total_ref_words = 0
total_ref_chars = 0
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
print(f"Warning: ID {id_val} not found in references")
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
# Print detailed info for first few entries
if len(results) < 5:
print(f"ID: {id_val}")
print(f"Reference: '{reference}'")
print(f"Hypothesis: '{hypothesis}'")
# Skip empty strings
if not reference or not hypothesis:
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
continue
# Split into words for jiwer
reference_words = reference.split()
hypothesis_words = hypothesis.split()
reference_chars = list(reference)
if len(results) < 5:
print(f"Reference words: {reference_words}")
print(f"Hypothesis words: {hypothesis_words}")
# Calculate metrics
try:
# Calculate WER and CER
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
# Cap metrics at sensible values to prevent outliers
sample_wer = min(sample_wer, 2.0) # Cap at 200% WER
sample_cer = min(sample_cer, 2.0) # Cap at 200% CER
# For weighted calculations
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
if len(results) < 5:
print(f"WER: {sample_wer}, CER: {sample_cer}")
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not results:
raise ValueError("No valid samples for WER/CER calculation")
# Calculate standard average metrics
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
# Calculate weighted average metrics based on reference length
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
print(f"Processed {len(results)} valid samples")
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
def process_submission(submitter_name, csv_file):
try:
# Read and validate the uploaded CSV
df = pd.read_csv(csv_file)
print(f"Processing submission from {submitter_name} with {len(df)} rows")
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
# Check if IDs match the reference dataset
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
# Calculate WER and CER
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# Debug information
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Weighted metrics - WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
print(f"Processed {len(detailed_results)} valid samples")
# Check for suspiciously low values
if avg_wer < 0.001:
print("WARNING: WER is extremely low - likely an error")
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
print(f"Error in metrics calculation: {str(e)}")
return f"Error calculating metrics: {str(e)}", None
# Update the leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
except Exception as e:
print(f"Error processing submission: {str(e)}")
return f"Error processing submission: {str(e)}", None
# Create the Gradio interface
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
Models are ranked based on their Word Error Rate (WER), from lowest to highest.
"""
)
# Load and display current leaderboard immediately
with gr.Tabs() as tabs:
with gr.TabItem("π
Current Rankings"):
# Show current leaderboard rankings
current_leaderboard = pd.read_csv(leaderboard_file).sort_values("WER")
gr.Markdown("### Current ASR Model Rankings")
leaderboard_view = gr.DataFrame(
value=current_leaderboard,
interactive=False,
label="Models are ranked by Word Error Rate (WER) - lower is better"
)
gr.Markdown(
"""
## Metrics Explanation
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
"""
)
with gr.TabItem("π Submit New Results"):
gr.Markdown(
"""
### Submit a new model for evaluation
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the reference dataset.
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Updated Leaderboard",
value=current_leaderboard,
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
# Print startup message
print("Starting Bambara ASR Leaderboard app...")
# Launch the app
if __name__ == "__main__":
demo.launch(share=True) |