Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,789 Bytes
0ff6c39 cd26609 afa19a3 5db22d5 0ff6c39 9d3ca6c 4522453 9d3ca6c cd26609 0813164 cd26609 0813164 cd26609 37ee1f3 cd26609 37ee1f3 cd26609 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 cd26609 9d3ca6c cd26609 afa19a3 4522453 afa19a3 9d3ca6c cd26609 9d3ca6c afa19a3 4522453 afa19a3 9d3ca6c 37ee1f3 9d3ca6c 0813164 37ee1f3 0813164 37ee1f3 0813164 37ee1f3 0813164 37ee1f3 9d3ca6c 37ee1f3 afa19a3 4522453 afa19a3 6e8312c 9d3ca6c 6e8312c 4522453 6e8312c afa19a3 6e8312c 4522453 6e8312c 4522453 6e8312c afa19a3 3e4847c 9d3ca6c afa19a3 9d3ca6c afa19a3 9d3ca6c 4522453 9d3ca6c 4522453 9d3ca6c afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 9d3ca6c afa19a3 4522453 afa19a3 9d3ca6c afa19a3 9d3ca6c 4522453 9d3ca6c 4522453 9d3ca6c 4522453 9d3ca6c 4522453 9d3ca6c 4522453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import gc
import shutil
import re
# ----- Custom CSS for pretty formatting of internal reasoning -----
CUSTOM_CSS = """
<style>
/* Styles for the internal reasoning bullet list */
ul.think-list {
margin: 0.5em 0 1em 1.5em;
padding: 0;
list-style-type: disc;
}
ul.think-list li {
margin-bottom: 0.5em;
}
/* Container style for the "in progress" internal reasoning */
.chat-assistant {
background-color: #f9f9f9;
padding: 1em;
border-radius: 5px;
margin-bottom: 1em;
}
</style>
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
# ----- Set a threshold for required free storage (in bytes) -----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
# ----- Available models -----
MODELS = {
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-7B Instruct (Q2_K)"
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
"filename": "gemma-3-4b-it-Q4_K_M.gguf",
"description": "Gemma 3 4B IT (Q4_K_M)"
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
"description": "Phi-4 Mini Instruct (Q4_K_M)"
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
},
}
# ----- Sidebar settings -----
with st.sidebar:
st.header("⚙️ Settings")
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
top_k = st.slider("Top-K", 1, 100, 40)
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
if st.button("🧹 Clear All Cached Models"):
try:
for f in os.listdir("models"):
if f.endswith(".gguf"):
os.remove(os.path.join("models", f))
st.success("Model cache cleared.")
except Exception as e:
st.error(f"Failed to clear models: {e}")
if st.button("📦 Show Disk Usage"):
try:
usage = shutil.disk_usage(".")
used = usage.used / (1024 ** 3)
free = usage.free / (1024 ** 3)
st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
except Exception as e:
st.error(f"Disk usage error: {e}")
# ----- Model info -----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
# ----- Session state initialization -----
if "model_name" not in st.session_state:
st.session_state.model_name = None
if "llm" not in st.session_state:
st.session_state.llm = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "pending_response" not in st.session_state:
st.session_state.pending_response = False
# ----- Ensure model directory exists -----
os.makedirs("models", exist_ok=True)
# ----- Functions for model management -----
def cleanup_old_models():
for f in os.listdir("models"):
if f.endswith(".gguf") and f != selected_model["filename"]:
try:
os.remove(os.path.join("models", f))
except Exception as e:
st.warning(f"Couldn't delete old model {f}: {e}")
def download_model():
with st.spinner(f"Downloading {selected_model['filename']}..."):
hf_hub_download(
repo_id=selected_model["repo_id"],
filename=selected_model["filename"],
local_dir="./models",
local_dir_use_symlinks=False, # Deprecated parameter; harmless warning.
)
def try_load_model(path):
try:
return Llama(
model_path=path,
n_ctx=1024,
n_threads=2,
n_threads_batch=2,
n_batch=4,
n_gpu_layers=0,
use_mlock=False,
use_mmap=True,
verbose=False,
)
except Exception as e:
return str(e)
def validate_or_download_model():
# Download model if not present locally.
if not os.path.exists(model_path):
free_space = shutil.disk_usage(".").free
if free_space < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage detected. Cleaning up old models to free up space.")
cleanup_old_models()
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.warning(f"Initial load failed: {result}\nAttempting re-download...")
try:
os.remove(model_path)
except Exception:
pass
free_space = shutil.disk_usage(".").free
if free_space < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage detected on re-download attempt. Cleaning up old models to free up space.")
cleanup_old_models()
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.error(f"Model still failed after re-download: {result}")
st.stop()
return result
return result
# ----- Load model if changed -----
if st.session_state.model_name != selected_model_name:
if st.session_state.llm is not None:
del st.session_state.llm
gc.collect()
st.session_state.llm = validate_or_download_model()
st.session_state.model_name = selected_model_name
llm = st.session_state.llm
# ----- Display title and caption -----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
# ----- Render full chat history -----
for chat in st.session_state.chat_history:
with st.chat_message(chat["role"]):
st.markdown(chat["content"])
# For assistant messages, if there's completed internal reasoning, display it behind an expander.
if chat.get("role") == "assistant" and chat.get("thinking"):
with st.expander("🧠 Model's Internal Reasoning"):
for t in chat["thinking"]:
st.markdown(t.strip())
# ----- Chat input widget -----
user_input = st.chat_input("Ask something...")
if user_input:
if st.session_state.pending_response:
st.warning("Please wait for the assistant to finish responding.")
else:
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.pending_response = True
MAX_TURNS = 8
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
messages = [{"role": "system", "content": system_prompt}] + trimmed_history
# ----- Streaming the assistant response -----
with st.chat_message("assistant"):
visible_placeholder = st.empty()
thinking_placeholder = st.empty()
full_response = ""
stream = llm.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stream=True,
)
for chunk in stream:
if "choices" in chunk:
delta = chunk["choices"][0]["delta"].get("content", "")
full_response += delta
# Determine if there is an open (in-progress) <think> block
open_think = re.search(r"<think>([^<]*)$", full_response, flags=re.DOTALL)
in_progress = open_think.group(1).strip() if open_think else ""
# Create the visible response by removing any complete <think>...</think> blocks,
# and also removing any in-progress (unclosed) <think> content.
visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
visible_placeholder.markdown(visible_response)
# If there's an in-progress thinking part, display it in a pretty style
if in_progress:
# You can further format in_progress as you like; here we wrap it in a styled div.
thinking_html = f"""
<div class="chat-assistant">
<strong>Internal Reasoning (in progress):</strong>
<br>{in_progress}
</div>
"""
thinking_placeholder.markdown(thinking_html, unsafe_allow_html=True)
else:
thinking_placeholder.empty()
# After streaming completes:
# Extract all completed <think> blocks (the final internal reasoning that was closed)
final_thinking = re.findall(r"<think>(.*?)</think>", full_response, flags=re.DOTALL)
# The final visible response: remove any <think> blocks or any in-progress open block.
final_visible = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
final_visible = re.sub(r"<think>.*$", "", final_visible, flags=re.DOTALL)
st.session_state.chat_history.append({
"role": "assistant",
"content": final_visible,
"thinking": final_thinking
})
st.session_state.pending_response = False
|