Spaces:
Runtime error
Runtime error
File size: 10,162 Bytes
0ff6c39 cd26609 afa19a3 5db22d5 0ff6c39 4522453 cd26609 0813164 cd26609 0813164 cd26609 37ee1f3 cd26609 37ee1f3 cd26609 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 afa19a3 d554072 cd26609 d554072 cd26609 afa19a3 4522453 afa19a3 cd26609 4522453 afa19a3 4522453 afa19a3 6e8312c 37ee1f3 d554072 0813164 37ee1f3 0813164 37ee1f3 0813164 37ee1f3 0813164 37ee1f3 afa19a3 4522453 afa19a3 6e8312c 4522453 6e8312c 4522453 6e8312c afa19a3 6e8312c 4522453 6e8312c 4522453 6e8312c afa19a3 3e4847c d554072 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 afa19a3 4522453 14564aa 5db22d5 4522453 5db22d5 4522453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import gc
import shutil
import re
# Set a threshold for required free storage (in bytes) before downloading a new model.
# Adjust this value according to the expected size of your models.
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
# Available models
MODELS = {
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-7B Instruct (Q2_K)"
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
"filename": "gemma-3-4b-it-Q4_K_M.gguf",
"description": "Gemma 3 4B IT (Q4_K_M)"
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
"description": "Phi-4 Mini Instruct (Q4_K_M)"
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
},
}
# Sidebar for model selection and settings
with st.sidebar:
st.header("⚙️ Settings")
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
top_k = st.slider("Top-K", 1, 100, 40)
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
if st.button("🧹 Clear All Cached Models"):
try:
for f in os.listdir("models"):
if f.endswith(".gguf"):
os.remove(os.path.join("models", f))
st.success("Model cache cleared.")
except Exception as e:
st.error(f"Failed to clear models: {e}")
if st.button("📦 Show Disk Usage"):
try:
usage = shutil.disk_usage(".")
used = usage.used / (1024 ** 3)
free = usage.free / (1024 ** 3)
st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
except Exception as e:
st.error(f"Disk usage error: {e}")
# Model info
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
# Initialize session state variables if not present
if "model_name" not in st.session_state:
st.session_state.model_name = None
if "llm" not in st.session_state:
st.session_state.llm = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "pending_response" not in st.session_state:
st.session_state.pending_response = False
# Ensure model directory exists
os.makedirs("models", exist_ok=True)
# Function to clean up old models
def cleanup_old_models():
for f in os.listdir("models"):
if f.endswith(".gguf") and f != selected_model["filename"]:
try:
os.remove(os.path.join("models", f))
except Exception as e:
st.warning(f"Couldn't delete old model {f}: {e}")
def download_model():
with st.spinner(f"Downloading {selected_model['filename']}..."):
hf_hub_download(
repo_id=selected_model["repo_id"],
filename=selected_model["filename"],
local_dir="./models",
local_dir_use_symlinks=False,
)
def try_load_model(path):
try:
return Llama(
model_path=path,
n_ctx=1024,
n_threads=2,
n_threads_batch=2,
n_batch=4,
n_gpu_layers=0,
use_mlock=False,
use_mmap=True,
verbose=False,
)
except Exception as e:
return str(e)
def validate_or_download_model():
# Download model if it doesn't exist locally.
if not os.path.exists(model_path):
# Check free space and cleanup old models only if free space is insufficient.
free_space = shutil.disk_usage(".").free
if free_space < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage detected. Cleaning up old models to free up space.")
cleanup_old_models()
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.warning(f"Initial load failed: {result}\nAttempting re-download...")
try:
os.remove(model_path)
except Exception:
pass
# Check storage again before re-downloading.
free_space = shutil.disk_usage(".").free
if free_space < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage detected on re-download attempt. Cleaning up old models to free up space.")
cleanup_old_models()
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.error(f"Model still failed after re-download: {result}")
st.stop()
return result
return result
# Load model if changed
if st.session_state.model_name != selected_model_name:
if st.session_state.llm is not None:
del st.session_state.llm
gc.collect()
st.session_state.llm = validate_or_download_model()
st.session_state.model_name = selected_model_name
llm = st.session_state.llm
# Display title and caption
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
# Render the full chat history
for chat in st.session_state.chat_history:
with st.chat_message(chat["role"]):
st.markdown(chat["content"])
# For assistant messages, if there's internal reasoning, display it behind an expander
if chat.get("role") == "assistant" and chat.get("thinking"):
with st.expander("🧠 Model's Internal Reasoning"):
for t in chat["thinking"]:
st.markdown(t.strip())
# Chat input widget
user_input = st.chat_input("Ask something...")
if user_input:
# Block new input if a response is still pending
if st.session_state.pending_response:
st.warning("Please wait for the assistant to finish responding.")
else:
# Append and render the user's message
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
# Mark that we are waiting for a response
st.session_state.pending_response = True
MAX_TURNS = 8
# Use the latest MAX_TURNS * 2 messages (system prompt plus conversation)
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
messages = [{"role": "system", "content": system_prompt}] + trimmed_history
# Create a container for the assistant's streaming message with two placeholders:
# one for visible output and one for the think part.
with st.chat_message("assistant"):
visible_placeholder = st.empty()
thinking_placeholder = st.empty()
full_response = ""
stream = llm.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stream=True,
)
# Stream and update the assistant's message in real time
for chunk in stream:
if "choices" in chunk:
delta = chunk["choices"][0]["delta"].get("content", "")
full_response += delta
# Update visible response by filtering out think parts
visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
visible_placeholder.markdown(visible_response)
# Extract and pretty format internal reasoning (if any) while streaming
thinking = re.findall(r"<think>(.*?)</think>", full_response, flags=re.DOTALL)
if thinking:
thinking_display = "\n\n".join(f"- {t.strip()}" for t in thinking)
thinking_placeholder.markdown(f"**Internal Reasoning (in progress):**\n\n{thinking_display}")
else:
thinking_placeholder.empty()
# After streaming completes, process the final full response:
visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
thinking = re.findall(r"<think>(.*?)</think>", full_response, flags=re.DOTALL)
st.session_state.chat_history.append({
"role": "assistant",
"content": visible_response,
"thinking": thinking
})
# Display the final internal reasoning behind an expander if available
if thinking:
with st.expander("🧠 Model's Internal Reasoning"):
for t in thinking:
st.markdown(t.strip())
# Clear the pending flag once done
st.session_state.pending_response = False
|