File size: 10,162 Bytes
0ff6c39
 
 
cd26609
 
afa19a3
5db22d5
0ff6c39
4522453
 
 
 
cd26609
 
 
 
 
 
 
0813164
cd26609
0813164
 
cd26609
37ee1f3
cd26609
37ee1f3
 
cd26609
d554072
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
cd26609
 
d554072
cd26609
 
 
 
 
 
 
 
 
 
afa19a3
 
 
 
 
 
 
 
 
 
 
 
4522453
 
afa19a3
 
 
 
cd26609
 
 
 
4522453
afa19a3
 
 
 
4522453
 
 
 
afa19a3
6e8312c
37ee1f3
 
d554072
0813164
 
 
37ee1f3
0813164
37ee1f3
0813164
37ee1f3
0813164
37ee1f3
 
 
 
 
 
 
 
afa19a3
 
4522453
 
 
 
 
 
 
 
 
 
 
afa19a3
 
 
6e8312c
4522453
6e8312c
4522453
 
 
 
 
6e8312c
afa19a3
 
 
 
6e8312c
 
4522453
6e8312c
4522453
 
 
 
 
6e8312c
afa19a3
 
 
 
 
 
3e4847c
d554072
afa19a3
 
 
 
 
 
 
 
 
4522453
afa19a3
 
 
4522453
 
 
 
 
 
 
 
 
 
 
afa19a3
 
 
4522453
 
 
afa19a3
4522453
afa19a3
 
 
 
4522453
 
 
afa19a3
4522453
 
afa19a3
 
4522453
 
afa19a3
4522453
 
afa19a3
 
 
 
 
 
 
 
 
 
4522453
afa19a3
 
 
 
4522453
 
 
 
 
 
 
 
 
 
 
14564aa
5db22d5
4522453
 
 
 
 
 
5db22d5
 
 
 
4522453
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os
import gc
import shutil
import re

# Set a threshold for required free storage (in bytes) before downloading a new model.
# Adjust this value according to the expected size of your models.
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3  # 5 GB

# Available models
MODELS = {
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q4_K_M.gguf",
        "description": "Gemma 3 4B IT (Q4_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
    "Meta-Llama-3.1-8B-Instruct (Q2_K)": {
        "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
        "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
        "description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
    },
    "DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
        "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
        "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
        "description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
    },
    "Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
        "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
        "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
        "description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
    },
    "Qwen2.5-Coder-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
        "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
    },
}

# Sidebar for model selection and settings
with st.sidebar:
    st.header("⚙️ Settings")
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
    system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
    max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32)
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
    top_k = st.slider("Top-K", 1, 100, 40)
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)

    if st.button("🧹 Clear All Cached Models"):
        try:
            for f in os.listdir("models"):
                if f.endswith(".gguf"):
                    os.remove(os.path.join("models", f))
            st.success("Model cache cleared.")
        except Exception as e:
            st.error(f"Failed to clear models: {e}")

    if st.button("📦 Show Disk Usage"):
        try:
            usage = shutil.disk_usage(".")
            used = usage.used / (1024 ** 3)
            free = usage.free / (1024 ** 3)
            st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
        except Exception as e:
            st.error(f"Disk usage error: {e}")

# Model info
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])

# Initialize session state variables if not present
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "pending_response" not in st.session_state:
    st.session_state.pending_response = False

# Ensure model directory exists
os.makedirs("models", exist_ok=True)

# Function to clean up old models
def cleanup_old_models():
    for f in os.listdir("models"):
        if f.endswith(".gguf") and f != selected_model["filename"]:
            try:
                os.remove(os.path.join("models", f))
            except Exception as e:
                st.warning(f"Couldn't delete old model {f}: {e}")

def download_model():
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

def try_load_model(path):
    try:
        return Llama(
            model_path=path,
            n_ctx=1024,
            n_threads=2,
            n_threads_batch=2,
            n_batch=4,
            n_gpu_layers=0,
            use_mlock=False,
            use_mmap=True,
            verbose=False,
        )
    except Exception as e:
        return str(e)

def validate_or_download_model():
    # Download model if it doesn't exist locally.
    if not os.path.exists(model_path):
        # Check free space and cleanup old models only if free space is insufficient.
        free_space = shutil.disk_usage(".").free
        if free_space < REQUIRED_SPACE_BYTES:
            st.info("Insufficient storage detected. Cleaning up old models to free up space.")
            cleanup_old_models()
        download_model()

    result = try_load_model(model_path)
    if isinstance(result, str):
        st.warning(f"Initial load failed: {result}\nAttempting re-download...")
        try:
            os.remove(model_path)
        except Exception:
            pass
        # Check storage again before re-downloading.
        free_space = shutil.disk_usage(".").free
        if free_space < REQUIRED_SPACE_BYTES:
            st.info("Insufficient storage detected on re-download attempt. Cleaning up old models to free up space.")
            cleanup_old_models()
        download_model()
        result = try_load_model(model_path)
        if isinstance(result, str):
            st.error(f"Model still failed after re-download: {result}")
            st.stop()
        return result
    return result

# Load model if changed
if st.session_state.model_name != selected_model_name:
    if st.session_state.llm is not None:
        del st.session_state.llm
        gc.collect()
    st.session_state.llm = validate_or_download_model()
    st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# Display title and caption
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

# Render the full chat history
for chat in st.session_state.chat_history:
    with st.chat_message(chat["role"]):
        st.markdown(chat["content"])
        # For assistant messages, if there's internal reasoning, display it behind an expander
        if chat.get("role") == "assistant" and chat.get("thinking"):
            with st.expander("🧠 Model's Internal Reasoning"):
                for t in chat["thinking"]:
                    st.markdown(t.strip())

# Chat input widget
user_input = st.chat_input("Ask something...")

if user_input:
    # Block new input if a response is still pending
    if st.session_state.pending_response:
        st.warning("Please wait for the assistant to finish responding.")
    else:
        # Append and render the user's message
        st.session_state.chat_history.append({"role": "user", "content": user_input})
        with st.chat_message("user"):
            st.markdown(user_input)

        # Mark that we are waiting for a response
        st.session_state.pending_response = True

        MAX_TURNS = 8
        # Use the latest MAX_TURNS * 2 messages (system prompt plus conversation)
        trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
        messages = [{"role": "system", "content": system_prompt}] + trimmed_history

        # Create a container for the assistant's streaming message with two placeholders:
        # one for visible output and one for the think part.
        with st.chat_message("assistant"):
            visible_placeholder = st.empty()
            thinking_placeholder = st.empty()
            full_response = ""
            stream = llm.create_chat_completion(
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repeat_penalty=repeat_penalty,
                stream=True,
            )
            # Stream and update the assistant's message in real time
            for chunk in stream:
                if "choices" in chunk:
                    delta = chunk["choices"][0]["delta"].get("content", "")
                    full_response += delta
                    # Update visible response by filtering out think parts
                    visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
                    visible_placeholder.markdown(visible_response)
                    # Extract and pretty format internal reasoning (if any) while streaming
                    thinking = re.findall(r"<think>(.*?)</think>", full_response, flags=re.DOTALL)
                    if thinking:
                        thinking_display = "\n\n".join(f"- {t.strip()}" for t in thinking)
                        thinking_placeholder.markdown(f"**Internal Reasoning (in progress):**\n\n{thinking_display}")
                    else:
                        thinking_placeholder.empty()
            # After streaming completes, process the final full response:
            visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
            thinking = re.findall(r"<think>(.*?)</think>", full_response, flags=re.DOTALL)
            st.session_state.chat_history.append({
                "role": "assistant",
                "content": visible_response,
                "thinking": thinking
            })
            # Display the final internal reasoning behind an expander if available
            if thinking:
                with st.expander("🧠 Model's Internal Reasoning"):
                    for t in thinking:
                        st.markdown(t.strip())

        # Clear the pending flag once done
        st.session_state.pending_response = False