CTP_Project / app.py
LuckyHappyFish's picture
Initial Commit
1bec4ea
raw
history blame
6.19 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
from gradio_client import Client
# Set page configuration
st.set_page_config(
page_title="Food Image Recognition with Ingredients",
page_icon="🍔",
layout="centered",
initial_sidebar_state="expanded",
)
# Custom CSS to improve styling and responsiveness
def local_css():
st.markdown(
"""
<style>
/* Main layout */
.main {
background-color: #f0f2f6;
}
/* Title styling */
.title h1 {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
text-align: center;
color: #ff4b4b;
font-size: 3rem;
margin-bottom: 20px;
}
/* Image styling */
.st-image img {
border-radius: 15px;
margin-bottom: 20px;
max-width: 100%;
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: #ff4b4b;
}
[data-testid="stSidebar"] .css-ng1t4o {
color: white;
}
[data-testid="stSidebar"] .css-1d391kg {
color: white;
}
/* File uploader styling */
.css-1y0tads {
background-color: #ff4b4b;
color: white;
border: none;
border-radius: 5px;
}
.css-1y0tads:hover {
background-color: #e04343;
color: white;
}
/* Button styling */
.stButton>button {
background-color: #ff4b4b;
color: white;
border: none;
padding: 0.5rem 1rem;
border-radius: 5px;
font-size: 1rem;
font-weight: bold;
margin-top: 10px;
}
.stButton>button:hover {
background-color: #e04343;
color: white;
}
/* Headers styling */
h2 {
color: #ff4b4b;
margin-top: 30px;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
h3 {
color: #ff4b4b;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* Text styling */
.stMarkdown p {
font-size: 1.1rem;
}
/* Footer styling */
footer {
visibility: hidden;
}
/* Mobile responsiveness */
@media only screen and (max-width: 600px) {
.title h1 {
font-size: 2rem;
}
.stButton>button {
width: 100%;
}
}
</style>
""",
unsafe_allow_html=True
)
local_css()
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
# Initialize the Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using Hugging Face Inference Client
def get_ingredients_qwen(food_name):
"""
Generate a list of ingredients for the given food item using Qwen NLP model.
Returns a clean, comma-separated list of ingredients.
"""
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
messages=messages,
max_tokens=50
)
generated_text = completion.choices[0].message["content"].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
# Main content
st.markdown('<div class="title"><h1>Food Image Recognition with Ingredients</h1></div>', unsafe_allow_html=True)
# Add banner image
st.image("IR_IMAGE.png", use_column_width=True)
# Sidebar for model information
with st.sidebar:
st.title("Model Information")
st.write("**Image Classification Model**")
st.write("Shresthadev403/food-image-classification")
st.write("**LLM for Ingredients**")
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
st.markdown("---")
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
# File uploader
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Classification button
if st.button("Classify"):
with st.spinner("Classifying..."):
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"🍽️ Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
st.subheader("💡 Healthier Alternatives")
try:
client_gradio = Client("https://8a56cb969da1f9d721.gradio.live/")
result = client_gradio.predict(
query=f"What's a healthy {top_food} recipe, and why is it healthy?",
api_name="/get_response"
)
st.write(result)
except Exception as e:
st.error(f"Unable to contact RAG: {e}")