Spaces:
Sleeping
Sleeping
File size: 6,186 Bytes
04f475a e73380c 04f475a 29afa83 7b63336 f6d41de 7b63336 56732d1 1bec4ea 56732d1 1bec4ea 56732d1 1bec4ea 56732d1 29afa83 e4d47cc 29afa83 f825898 04f475a f825898 800f4d4 04f475a f825898 29afa83 800f4d4 29afa83 3500d25 800f4d4 29afa83 4bfa63a 29afa83 f83534a 29afa83 1bec4ea f83534a 1bec4ea f83534a 56732d1 1bec4ea 56732d1 f83534a 1bec4ea f83534a 56732d1 f83534a 1bec4ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
from gradio_client import Client
# Set page configuration
st.set_page_config(
page_title="Food Image Recognition with Ingredients",
page_icon="🍔",
layout="centered",
initial_sidebar_state="expanded",
)
# Custom CSS to improve styling and responsiveness
def local_css():
st.markdown(
"""
<style>
/* Main layout */
.main {
background-color: #f0f2f6;
}
/* Title styling */
.title h1 {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
text-align: center;
color: #ff4b4b;
font-size: 3rem;
margin-bottom: 20px;
}
/* Image styling */
.st-image img {
border-radius: 15px;
margin-bottom: 20px;
max-width: 100%;
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: #ff4b4b;
}
[data-testid="stSidebar"] .css-ng1t4o {
color: white;
}
[data-testid="stSidebar"] .css-1d391kg {
color: white;
}
/* File uploader styling */
.css-1y0tads {
background-color: #ff4b4b;
color: white;
border: none;
border-radius: 5px;
}
.css-1y0tads:hover {
background-color: #e04343;
color: white;
}
/* Button styling */
.stButton>button {
background-color: #ff4b4b;
color: white;
border: none;
padding: 0.5rem 1rem;
border-radius: 5px;
font-size: 1rem;
font-weight: bold;
margin-top: 10px;
}
.stButton>button:hover {
background-color: #e04343;
color: white;
}
/* Headers styling */
h2 {
color: #ff4b4b;
margin-top: 30px;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
h3 {
color: #ff4b4b;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* Text styling */
.stMarkdown p {
font-size: 1.1rem;
}
/* Footer styling */
footer {
visibility: hidden;
}
/* Mobile responsiveness */
@media only screen and (max-width: 600px) {
.title h1 {
font-size: 2rem;
}
.stButton>button {
width: 100%;
}
}
</style>
""",
unsafe_allow_html=True
)
local_css()
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
# Initialize the Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using Hugging Face Inference Client
def get_ingredients_qwen(food_name):
"""
Generate a list of ingredients for the given food item using Qwen NLP model.
Returns a clean, comma-separated list of ingredients.
"""
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
messages=messages,
max_tokens=50
)
generated_text = completion.choices[0].message["content"].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
# Main content
st.markdown('<div class="title"><h1>Food Image Recognition with Ingredients</h1></div>', unsafe_allow_html=True)
# Add banner image
st.image("IR_IMAGE.png", use_column_width=True)
# Sidebar for model information
with st.sidebar:
st.title("Model Information")
st.write("**Image Classification Model**")
st.write("Shresthadev403/food-image-classification")
st.write("**LLM for Ingredients**")
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
st.markdown("---")
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
# File uploader
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Classification button
if st.button("Classify"):
with st.spinner("Classifying..."):
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"🍽️ Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
st.subheader("💡 Healthier Alternatives")
try:
client_gradio = Client("https://8a56cb969da1f9d721.gradio.live/")
result = client_gradio.predict(
query=f"What's a healthy {top_food} recipe, and why is it healthy?",
api_name="/get_response"
)
st.write(result)
except Exception as e:
st.error(f"Unable to contact RAG: {e}")
|