Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load the model | |
model_name = "knowledgator/comprehend_it-base" | |
classifier = pipeline("zero-shot-classification", model=model_name, device="cpu") | |
# Function to classify feedback | |
def classify_feedback(feedback_text): | |
# Classify feedback using the loaded model | |
labels = ["Value", "Facilities", "Experience", "Functionality", "Quality"] | |
result = classifier(feedback_text, labels, multi_label=True) | |
# Get the top two labels associated with the feedback and their scores | |
top_labels = result["labels"][:2] | |
scores = result["scores"][:2] | |
# Prepare the outputs to display both labels and their corresponding meters | |
outputs = [] | |
for label, score in zip(top_labels, scores): | |
label_with_score = f"{label}: {score:.2f}" | |
outputs.append(gr.Label(label_with_score)) | |
outputs.append(gr.Meter(value=score)) | |
return outputs | |
# Create Gradio interface | |
feedback_textbox = gr.Textbox(label="Enter your feedback:") | |
feedback_output = [gr.Label(), gr.Meter(), gr.Label(), gr.Meter()] # Output placeholders for two labels and meters | |
iface = gr.Interface( | |
fn=classify_feedback, | |
inputs=feedback_textbox, | |
outputs=feedback_output, | |
title="Feedback Classifier", | |
description="Enter your feedback and get the top 2 associated labels with scores.", | |
layout="vertical" | |
) | |
iface.launch() | |