Spaces:
Sleeping
Sleeping
File size: 1,409 Bytes
889cf93 74a1f1c 889cf93 74a1f1c 11c95b0 74a1f1c 4297311 d775997 74a1f1c 4297311 74a1f1c d775997 4297311 74a1f1c 4297311 74a1f1c 4297311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
from transformers import pipeline
# Load the model
model_name = "knowledgator/comprehend_it-base"
classifier = pipeline("zero-shot-classification", model=model_name, device="cpu")
# Function to classify feedback
def classify_feedback(feedback_text):
# Classify feedback using the loaded model
labels = ["Value", "Facilities", "Experience", "Functionality", "Quality"]
result = classifier(feedback_text, labels, multi_label=True)
# Get the top two labels associated with the feedback and their scores
top_labels = result["labels"][:2]
scores = result["scores"][:2]
# Prepare the outputs to display both labels and their corresponding meters
outputs = []
for label, score in zip(top_labels, scores):
label_with_score = f"{label}: {score:.2f}"
outputs.append(gr.Label(label_with_score))
outputs.append(gr.Meter(value=score))
return outputs
# Create Gradio interface
feedback_textbox = gr.Textbox(label="Enter your feedback:")
feedback_output = [gr.Label(), gr.Meter(), gr.Label(), gr.Meter()] # Output placeholders for two labels and meters
iface = gr.Interface(
fn=classify_feedback,
inputs=feedback_textbox,
outputs=feedback_output,
title="Feedback Classifier",
description="Enter your feedback and get the top 2 associated labels with scores.",
layout="vertical"
)
iface.launch()
|