File size: 24,136 Bytes
739e310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import os
import tempfile
import warnings
from typing import List

import torch
from tokenizers import AddedToken, processors

from transformers import GenerationConfig, LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
from transformers.convert_slow_tokenizer import TikTokenConverter


try:
    from transformers import LlamaTokenizerFast
except ImportError as e:
    warnings.warn(e)
    warnings.warn(
        "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
    )
    LlamaTokenizerFast = None

"""
Sample usage:

```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
    --input_dir /path/to/downloaded/llama/weights --model_size 1B --llama_version 3.2 --output_dir /output/path
```

Thereafter, models can be loaded via:

```py
from transformers import LlamaForCausalLM, LlamaTokenizer

model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).

If you want your tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor:

```py
from tokenizers import processors
bos = "<|begin_of_text|>"
tokenizer._tokenizers.post_processor = processors.Sequence(
    [
        processors.ByteLevel(trim_offsets=False),
        processors.TemplateProcessing(
            single=f"{bos}:0 $A:0",
            pair=f"{bos}:0 $A:0 {bos}:1 $B:1",
            special_tokens=[
                (bos, tokenizer.encode(bos)),
            ],
        ),
    ]
)
```
"""

NUM_SHARDS = {
    "1B": 1,
    "3B": 1,
    "7B": 1,
    "8B": 1,
    "8Bf": 1,
    "7Bf": 1,
    "13B": 2,
    "13Bf": 2,
    "34B": 4,
    "30B": 4,
    "65B": 8,
    "70B": 8,
    "70Bf": 8,
    "405B": 8,
    "405B-MP16": 16,
}

CONTEXT_LENGTH_FOR_VERSION = {"Guard-3": 131072, "3.2": 131072, "3.1": 131072, "3": 8192, "2": 4096, "1": 2048}

BOS_ADDED_TOKEN = AddedToken(
    "<|begin_of_text|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True
)
EOS_ADDED_TOKEN = AddedToken(
    "<|end_of_text|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True
)
EOT_ADDED_TOKEN = AddedToken(
    "<|eot_id|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True
)

DEFAULT_LLAMA_SPECIAL_TOKENS = {
    "3": [
        "<|begin_of_text|>",
        "<|end_of_text|>",
        "<|reserved_special_token_0|>",
        "<|reserved_special_token_1|>",
        "<|reserved_special_token_2|>",
        "<|reserved_special_token_3|>",
        "<|start_header_id|>",
        "<|end_header_id|>",
        "<|reserved_special_token_4|>",
        "<|eot_id|>",  # end of turn
    ]
    + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
    "3.1": [
        "<|begin_of_text|>",
        "<|end_of_text|>",
        "<|reserved_special_token_0|>",
        "<|reserved_special_token_1|>",
        "<|finetune_right_pad_id|>",
        "<|reserved_special_token_2|>",
        "<|start_header_id|>",
        "<|end_header_id|>",
        "<|eom_id|>",  # end of message
        "<|eot_id|>",  # end of turn
        "<|python_tag|>",
    ]
    + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
    "3.2": [
        "<|begin_of_text|>",
        "<|end_of_text|>",
        "<|reserved_special_token_0|>",
        "<|reserved_special_token_1|>",
        "<|finetune_right_pad_id|>",
        "<|reserved_special_token_2|>",
        "<|start_header_id|>",
        "<|end_header_id|>",
        "<|eom_id|>",  # end of message
        "<|eot_id|>",  # end of turn
        "<|python_tag|>",
    ]
    + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
    "Guard-3": [
        "<|begin_of_text|>",
        "<|end_of_text|>",
        "<|reserved_special_token_0|>",
        "<|reserved_special_token_1|>",
        "<|finetune_right_pad_id|>",
        "<|reserved_special_token_2|>",
        "<|start_header_id|>",
        "<|end_header_id|>",
        "<|eom_id|>",  # end of message
        "<|eot_id|>",  # end of turn
        "<|python_tag|>",
    ]
    + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
}


def is_llama_3(version):
    return version in ["3", "3.1", "3.2", "Guard-3"]


def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
    return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)


def read_json(path):
    with open(path, "r") as f:
        return json.load(f)


def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)


def write_model(
    model_path,
    input_base_path,
    model_size=None,
    safe_serialization=True,
    llama_version="1",
    vocab_size=None,
    num_shards=None,
    instruct=False,
    push_to_hub=False,
):
    print("Converting the model.")
    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards
    params = params.get("model", params)
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    n_heads_per_shard = n_heads // num_shards
    dim = params["dim"]
    dims_per_head = dim // n_heads
    base = params.get("rope_theta", 10000.0)
    inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
    if base > 10000.0 and not is_llama_3(llama_version):
        max_position_embeddings = 16384
    else:
        max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]

    if params.get("n_kv_heads", None) is not None:
        num_key_value_heads = params["n_kv_heads"]  # for GQA / MQA
        num_key_value_heads_per_shard = num_key_value_heads // num_shards
        key_value_dim = dims_per_head * num_key_value_heads
    else:  # compatibility with other checkpoints
        num_key_value_heads = n_heads
        num_key_value_heads_per_shard = n_heads_per_shard
        key_value_dim = dim

    # permute for sliced rotary
    def permute(w, n_heads, dim1=dim, dim2=dim):
        return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)

    with tempfile.TemporaryDirectory() as tmp_model_path:
        print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
        # Load weights
        if num_shards == 1:
            # Not sharded
            # (The sharded implementation would also work, but this is simpler.)
            loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
        else:
            # Sharded
            checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
            print("Loading in order:", checkpoint_list)
            loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
        param_count = 0
        index_dict = {"weight_map": {}}
        for layer_i in range(n_layers):
            filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
            if num_shards == 1:
                # Unsharded
                state_dict = {
                    f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
                        loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads
                    ),
                    f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
                        loaded[f"layers.{layer_i}.attention.wk.weight"],
                        n_heads=num_key_value_heads,
                        dim1=key_value_dim,
                    ),
                    f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
                    f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
                    f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
                    f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
                    f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
                    f"model.layers.{layer_i}.input_layernorm.weight": loaded[
                        f"layers.{layer_i}.attention_norm.weight"
                    ],
                    f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[
                        f"layers.{layer_i}.ffn_norm.weight"
                    ],
                }
            else:
                # Sharded
                # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
                # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
                # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.

                state_dict = {
                    f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
                        f"layers.{layer_i}.attention_norm.weight"
                    ].clone(),
                    f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
                        f"layers.{layer_i}.ffn_norm.weight"
                    ].clone(),
                }
                state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
                    torch.cat(
                        [
                            loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(
                                n_heads_per_shard, dims_per_head, dim
                            )
                            for i in range(len(loaded))
                        ],
                        dim=0,
                    ).reshape(dim, dim),
                    n_heads=n_heads,
                )
                state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
                    torch.cat(
                        [
                            loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
                                num_key_value_heads_per_shard, dims_per_head, dim
                            )
                            for i in range(len(loaded))
                        ],
                        dim=0,
                    ).reshape(key_value_dim, dim),
                    num_key_value_heads,
                    key_value_dim,
                    dim,
                )
                state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                    [
                        loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
                            num_key_value_heads_per_shard, dims_per_head, dim
                        )
                        for i in range(len(loaded))
                    ],
                    dim=0,
                ).reshape(key_value_dim, dim)

                state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                    [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1
                )
                state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
                    [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0
                )
                state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
                    [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1
                )
                state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
                    [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0
                )

            state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
            for k, v in state_dict.items():
                index_dict["weight_map"][k] = filename
                param_count += v.numel()
            torch.save(state_dict, os.path.join(tmp_model_path, filename))

        filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
        if num_shards == 1:
            # Unsharded
            state_dict = {
                "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
                "model.norm.weight": loaded["norm.weight"],
                "lm_head.weight": loaded["output.weight"],
            }
        else:
            concat_dim = 0 if is_llama_3(llama_version) else 1
            state_dict = {
                "model.norm.weight": loaded[0]["norm.weight"],
                "model.embed_tokens.weight": torch.cat(
                    [loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim
                ),
                "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),
            }

        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(tmp_model_path, filename))

        # Write configs
        index_dict["metadata"] = {"total_size": param_count * 2}
        write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
        ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
        multiple_of = params["multiple_of"] if "multiple_of" in params else 256

        if is_llama_3(llama_version):
            bos_token_id = 128000

            if instruct:
                eos_token_id = [128001, 128008, 128009]
            else:
                eos_token_id = 128001
        else:
            bos_token_id = 1
            eos_token_id = 2

        if llama_version in ["3.1", "3.2", "Guard-3"]:
            rope_scaling = {
                "factor": 32.0 if llama_version == "3.2" else 8.0,
                "low_freq_factor": 1.0,
                "high_freq_factor": 4.0,
                "original_max_position_embeddings": 8192,
                "rope_type": "llama3",
            }
        else:
            rope_scaling = None

        config = LlamaConfig(
            hidden_size=dim,
            intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
            num_attention_heads=params["n_heads"],
            num_hidden_layers=params["n_layers"],
            rms_norm_eps=params["norm_eps"],
            num_key_value_heads=num_key_value_heads,
            vocab_size=vocab_size,
            rope_theta=base,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=True if llama_version in ["3.2"] else False,
        )

        config.save_pretrained(tmp_model_path)

        generation_config = GenerationConfig(
            do_sample=True,
            temperature=0.6,
            top_p=0.9,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
        )
        generation_config.save_pretrained(tmp_model_path)

        # Make space so we can load the model properly now.
        del state_dict
        del loaded
        gc.collect()

        print("Loading the checkpoint in a Llama model.")
        model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)

        # Avoid saving this as part of the config.
        del model.config._name_or_path
        model.config.torch_dtype = torch.float16

        print("Saving in the Transformers format.")
        if push_to_hub:
            print("Pushing to the hub.")
            model.push_to_hub(model_path, safe_serialization=safe_serialization, private=True, use_temp_dir=True)
        else:
            print("Saving to disk.")
            model.save_pretrained(model_path, safe_serialization=safe_serialization)


class Llama3Converter(TikTokenConverter):
    def __init__(self, vocab_file, special_tokens=None, instruct=False, llama_version="3.2", **kwargs):
        super().__init__(vocab_file, additional_special_tokens=special_tokens, **kwargs)
        tokenizer = self.converted()

        # References for chat templates in instruct models
        templates_for_version = {
            "2": ("meta-llama/Llama-2-7b-chat-hf", "f5db02db724555f92da89c216ac04704f23d4590"),
            "3": ("meta-llama/Meta-Llama-3-8B-Instruct", "5f0b02c75b57c5855da9ae460ce51323ea669d8a"),
            "3.1": ("meta-llama/Llama-3.1-8B-Instruct", "0e9e39f249a16976918f6564b8830bc894c89659"),
            "3.2": ("meta-llama/Llama-3.2-1B-Instruct", "e9f8effbab1cbdc515c11ee6e098e3d5a9f51e14"),
            "Guard-3": ("meta-llama/Llama-Guard-3-1B", "acf7aafa60f0410f8f42b1fa35e077d705892029"),
        }

        # Add chat_template only if instruct is True.
        # Prevents a null chat_template, which triggers
        # a parsing warning in the Hub.
        additional_kwargs = {}
        if instruct or llama_version in ["Guard-3"]:
            model_id, revision = templates_for_version.get(llama_version, (None, None))
            if model_id is not None:
                from transformers import AutoTokenizer

                t = AutoTokenizer.from_pretrained(model_id, revision=revision)
                additional_kwargs["chat_template"] = t.chat_template

        self.converted_tokenizer = PreTrainedTokenizerFast(
            tokenizer_object=tokenizer,
            bos_token="<|begin_of_text|>",
            eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
            model_input_names=["input_ids", "attention_mask"],
            model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version],
            clean_up_tokenization_spaces=True,
            **additional_kwargs,
        )
        self.update_post_processor(self.converted_tokenizer)
        # finer special_tokens_map.json
        self.converted_tokenizer._bos_token = BOS_ADDED_TOKEN
        self.converted_tokenizer._eos_token = EOT_ADDED_TOKEN if instruct else EOS_ADDED_TOKEN

    # We can't do this while building the tokenizer because we have no easy access to the bos token id
    def update_post_processor(self, tokenizer):
        tokenizer._tokenizer.post_processor = processors.Sequence(
            [
                processors.ByteLevel(trim_offsets=False),
                processors.TemplateProcessing(
                    single="<|begin_of_text|> $A",
                    pair="<|begin_of_text|>:0 $A:0 <|begin_of_text|>:1 $B:1",
                    special_tokens=[
                        ("<|begin_of_text|>", tokenizer.convert_tokens_to_ids("<|begin_of_text|>")),
                    ],
                ),
            ]
        )


def write_tokenizer(
    tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False, push_to_hub=False
):
    print("Converting the tokenizer.")
    tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
    if is_llama_3(llama_version):
        tokenizer = Llama3Converter(
            input_tokenizer_path,
            special_tokens,
            instruct,
            llama_version,
        ).converted_tokenizer
    else:
        try:
            tokenizer = tokenizer_class(input_tokenizer_path)
        except Exception:
            raise ValueError(
                "Failed to instantiate tokenizer. Please, make sure you have sentencepiece and protobuf installed."
            )

    if push_to_hub:
        print(f"Pushing a {tokenizer_class.__name__} to the Hub repo - {tokenizer_path}.")
        tokenizer.push_to_hub(tokenizer_path, private=True, use_temp_dir=True)
    else:
        print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
        tokenizer.save_pretrained(tokenizer_path)
    return tokenizer


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of Llama weights, which contains tokenizer.model and model folders",
    )
    parser.add_argument(
        "--model_size",
        default=None,
        help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama",
    )
    parser.add_argument(
        "--output_dir",
        help="Location to write HF model and tokenizer",
    )
    parser.add_argument(
        "--push_to_hub",
        help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--safe_serialization", action="store_true", default=True, help="Whether or not to save using `safetensors`."
    )
    # Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
    parser.add_argument(
        "--llama_version",
        choices=["1", "2", "3", "3.1", "3.2", "Guard-3"],
        default="1",
        type=str,
        help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
    )
    parser.add_argument(
        "--num_shards",
        default=None,
        type=int,
        help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
    )
    parser.add_argument(
        "--special_tokens",
        default=None,
        type=List[str],
        help="The list of special tokens that should be added to the model.",
    )
    parser.add_argument(
        "--instruct",
        action="store_true",
        default=False,
        help="Whether the model is an instruct model or not. Will affect special tokens and chat template.",
    )
    args = parser.parse_args()
    if args.model_size is None and args.num_shards is None:
        raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
    if args.special_tokens is None:
        # no special tokens by default
        args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS.get(str(args.llama_version), [])

    spm_path = os.path.join(args.input_dir, "tokenizer.model")
    vocab_size = len(
        write_tokenizer(
            args.output_dir,
            spm_path,
            llama_version=args.llama_version,
            special_tokens=args.special_tokens,
            instruct=args.instruct,
            push_to_hub=args.push_to_hub,
        )
    )

    if args.model_size != "tokenizer_only":
        write_model(
            model_path=args.output_dir,
            input_base_path=args.input_dir,
            model_size=args.model_size,
            safe_serialization=args.safe_serialization,
            llama_version=args.llama_version,
            vocab_size=vocab_size,
            num_shards=args.num_shards,
            instruct=args.instruct,
            push_to_hub=args.push_to_hub,
        )


if __name__ == "__main__":
    main()