Logeswaransr commited on
Commit
739e310
·
1 Parent(s): 5022ada

Llama 2 Changes

Browse files
Files changed (4) hide show
  1. README.md +2 -0
  2. app.py +44 -1
  3. converter.py +601 -0
  4. requirements.txt +11 -0
README.md CHANGED
@@ -8,6 +8,8 @@ sdk_version: 5.12.0
8
  app_file: app.py
9
  pinned: false
10
  short_description: Gradio Interface for LLaMa-2-7B model
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
8
  app_file: app.py
9
  pinned: false
10
  short_description: Gradio Interface for LLaMa-2-7B model
11
+ models:
12
+ - meta-llama/Llama-2-7b
13
  ---
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,3 +1,46 @@
1
  import gradio as gr
 
 
 
2
 
3
- gr.load("models/meta-llama/Llama-2-7b-hf").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
+ from huggingface_hub import snapshot_download
4
+ import torch
5
 
6
+ import os
7
+ import subprocess
8
+ import gc
9
+
10
+ model_id = "meta-llama/Llama-2-7b"
11
+
12
+ print("\n\nSaving model to Local....\n\n")
13
+
14
+ snapshot_download(repo_id=model_id, local_dir="llama")
15
+
16
+ print("\n\nConverting to suitable type...\n\n")
17
+ subprocess.run("python converter.py --input_dir llama --model_size 7B --output_dir model".split(" "))
18
+ print("\n\nModel converted successfully!!\n\n")
19
+ print(os.listdir("model"))
20
+
21
+ gc.collect()
22
+
23
+ print("\n\nInitializing model...\n\n")
24
+ model_interface = pipeline(
25
+ "text-generation",
26
+ model="./model",
27
+ torch_dtype=torch.bfloat16,
28
+ device="cpu",
29
+ )
30
+ print("\n\nModel initialized successfully!!\n\n")
31
+
32
+ def generate_text(text: str) -> str:
33
+ response = model_interface(text, do_sample=False)
34
+ response_text = response[0]["generated_text"]
35
+ return response_text
36
+
37
+ # Create the Gradio interface
38
+ iface = gr.Interface(
39
+ fn=generate_text,
40
+ inputs=gr.Textbox(lines=3, placeholder="Enter your prompt here"),
41
+ outputs=gr.Textbox(lines=5),
42
+ title="Llama 2 Text Generator",
43
+ description="Generate text using the Llama 2 model.",
44
+ )
45
+
46
+ iface.launch()
converter.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import gc
16
+ import json
17
+ import os
18
+ import tempfile
19
+ import warnings
20
+ from typing import List
21
+
22
+ import torch
23
+ from tokenizers import AddedToken, processors
24
+
25
+ from transformers import GenerationConfig, LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
26
+ from transformers.convert_slow_tokenizer import TikTokenConverter
27
+
28
+
29
+ try:
30
+ from transformers import LlamaTokenizerFast
31
+ except ImportError as e:
32
+ warnings.warn(e)
33
+ warnings.warn(
34
+ "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
35
+ )
36
+ LlamaTokenizerFast = None
37
+
38
+ """
39
+ Sample usage:
40
+
41
+ ```
42
+ python src/transformers/models/llama/convert_llama_weights_to_hf.py \
43
+ --input_dir /path/to/downloaded/llama/weights --model_size 1B --llama_version 3.2 --output_dir /output/path
44
+ ```
45
+
46
+ Thereafter, models can be loaded via:
47
+
48
+ ```py
49
+ from transformers import LlamaForCausalLM, LlamaTokenizer
50
+
51
+ model = LlamaForCausalLM.from_pretrained("/output/path")
52
+ tokenizer = LlamaTokenizer.from_pretrained("/output/path")
53
+ ```
54
+
55
+ Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
56
+ come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
57
+
58
+ If you want your tokenizer to add a bos automatically you should update the tokenizer._tokenizers.post_processor:
59
+
60
+ ```py
61
+ from tokenizers import processors
62
+ bos = "<|begin_of_text|>"
63
+ tokenizer._tokenizers.post_processor = processors.Sequence(
64
+ [
65
+ processors.ByteLevel(trim_offsets=False),
66
+ processors.TemplateProcessing(
67
+ single=f"{bos}:0 $A:0",
68
+ pair=f"{bos}:0 $A:0 {bos}:1 $B:1",
69
+ special_tokens=[
70
+ (bos, tokenizer.encode(bos)),
71
+ ],
72
+ ),
73
+ ]
74
+ )
75
+ ```
76
+ """
77
+
78
+ NUM_SHARDS = {
79
+ "1B": 1,
80
+ "3B": 1,
81
+ "7B": 1,
82
+ "8B": 1,
83
+ "8Bf": 1,
84
+ "7Bf": 1,
85
+ "13B": 2,
86
+ "13Bf": 2,
87
+ "34B": 4,
88
+ "30B": 4,
89
+ "65B": 8,
90
+ "70B": 8,
91
+ "70Bf": 8,
92
+ "405B": 8,
93
+ "405B-MP16": 16,
94
+ }
95
+
96
+ CONTEXT_LENGTH_FOR_VERSION = {"Guard-3": 131072, "3.2": 131072, "3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
97
+
98
+ BOS_ADDED_TOKEN = AddedToken(
99
+ "<|begin_of_text|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True
100
+ )
101
+ EOS_ADDED_TOKEN = AddedToken(
102
+ "<|end_of_text|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True
103
+ )
104
+ EOT_ADDED_TOKEN = AddedToken(
105
+ "<|eot_id|>", single_word=False, lstrip=False, rstrip=False, normalized=False, special=True
106
+ )
107
+
108
+ DEFAULT_LLAMA_SPECIAL_TOKENS = {
109
+ "3": [
110
+ "<|begin_of_text|>",
111
+ "<|end_of_text|>",
112
+ "<|reserved_special_token_0|>",
113
+ "<|reserved_special_token_1|>",
114
+ "<|reserved_special_token_2|>",
115
+ "<|reserved_special_token_3|>",
116
+ "<|start_header_id|>",
117
+ "<|end_header_id|>",
118
+ "<|reserved_special_token_4|>",
119
+ "<|eot_id|>", # end of turn
120
+ ]
121
+ + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
122
+ "3.1": [
123
+ "<|begin_of_text|>",
124
+ "<|end_of_text|>",
125
+ "<|reserved_special_token_0|>",
126
+ "<|reserved_special_token_1|>",
127
+ "<|finetune_right_pad_id|>",
128
+ "<|reserved_special_token_2|>",
129
+ "<|start_header_id|>",
130
+ "<|end_header_id|>",
131
+ "<|eom_id|>", # end of message
132
+ "<|eot_id|>", # end of turn
133
+ "<|python_tag|>",
134
+ ]
135
+ + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
136
+ "3.2": [
137
+ "<|begin_of_text|>",
138
+ "<|end_of_text|>",
139
+ "<|reserved_special_token_0|>",
140
+ "<|reserved_special_token_1|>",
141
+ "<|finetune_right_pad_id|>",
142
+ "<|reserved_special_token_2|>",
143
+ "<|start_header_id|>",
144
+ "<|end_header_id|>",
145
+ "<|eom_id|>", # end of message
146
+ "<|eot_id|>", # end of turn
147
+ "<|python_tag|>",
148
+ ]
149
+ + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
150
+ "Guard-3": [
151
+ "<|begin_of_text|>",
152
+ "<|end_of_text|>",
153
+ "<|reserved_special_token_0|>",
154
+ "<|reserved_special_token_1|>",
155
+ "<|finetune_right_pad_id|>",
156
+ "<|reserved_special_token_2|>",
157
+ "<|start_header_id|>",
158
+ "<|end_header_id|>",
159
+ "<|eom_id|>", # end of message
160
+ "<|eot_id|>", # end of turn
161
+ "<|python_tag|>",
162
+ ]
163
+ + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
164
+ }
165
+
166
+
167
+ def is_llama_3(version):
168
+ return version in ["3", "3.1", "3.2", "Guard-3"]
169
+
170
+
171
+ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
172
+ return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
173
+
174
+
175
+ def read_json(path):
176
+ with open(path, "r") as f:
177
+ return json.load(f)
178
+
179
+
180
+ def write_json(text, path):
181
+ with open(path, "w") as f:
182
+ json.dump(text, f)
183
+
184
+
185
+ def write_model(
186
+ model_path,
187
+ input_base_path,
188
+ model_size=None,
189
+ safe_serialization=True,
190
+ llama_version="1",
191
+ vocab_size=None,
192
+ num_shards=None,
193
+ instruct=False,
194
+ push_to_hub=False,
195
+ ):
196
+ print("Converting the model.")
197
+ params = read_json(os.path.join(input_base_path, "params.json"))
198
+ num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shards
199
+ params = params.get("model", params)
200
+ n_layers = params["n_layers"]
201
+ n_heads = params["n_heads"]
202
+ n_heads_per_shard = n_heads // num_shards
203
+ dim = params["dim"]
204
+ dims_per_head = dim // n_heads
205
+ base = params.get("rope_theta", 10000.0)
206
+ inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
207
+ if base > 10000.0 and not is_llama_3(llama_version):
208
+ max_position_embeddings = 16384
209
+ else:
210
+ max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
211
+
212
+ if params.get("n_kv_heads", None) is not None:
213
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
214
+ num_key_value_heads_per_shard = num_key_value_heads // num_shards
215
+ key_value_dim = dims_per_head * num_key_value_heads
216
+ else: # compatibility with other checkpoints
217
+ num_key_value_heads = n_heads
218
+ num_key_value_heads_per_shard = n_heads_per_shard
219
+ key_value_dim = dim
220
+
221
+ # permute for sliced rotary
222
+ def permute(w, n_heads, dim1=dim, dim2=dim):
223
+ return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
224
+
225
+ with tempfile.TemporaryDirectory() as tmp_model_path:
226
+ print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
227
+ # Load weights
228
+ if num_shards == 1:
229
+ # Not sharded
230
+ # (The sharded implementation would also work, but this is simpler.)
231
+ loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
232
+ else:
233
+ # Sharded
234
+ checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
235
+ print("Loading in order:", checkpoint_list)
236
+ loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
237
+ param_count = 0
238
+ index_dict = {"weight_map": {}}
239
+ for layer_i in range(n_layers):
240
+ filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
241
+ if num_shards == 1:
242
+ # Unsharded
243
+ state_dict = {
244
+ f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
245
+ loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads
246
+ ),
247
+ f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
248
+ loaded[f"layers.{layer_i}.attention.wk.weight"],
249
+ n_heads=num_key_value_heads,
250
+ dim1=key_value_dim,
251
+ ),
252
+ f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
253
+ f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
254
+ f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
255
+ f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
256
+ f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
257
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[
258
+ f"layers.{layer_i}.attention_norm.weight"
259
+ ],
260
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[
261
+ f"layers.{layer_i}.ffn_norm.weight"
262
+ ],
263
+ }
264
+ else:
265
+ # Sharded
266
+ # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
267
+ # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
268
+ # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
269
+
270
+ state_dict = {
271
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
272
+ f"layers.{layer_i}.attention_norm.weight"
273
+ ].clone(),
274
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
275
+ f"layers.{layer_i}.ffn_norm.weight"
276
+ ].clone(),
277
+ }
278
+ state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
279
+ torch.cat(
280
+ [
281
+ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(
282
+ n_heads_per_shard, dims_per_head, dim
283
+ )
284
+ for i in range(len(loaded))
285
+ ],
286
+ dim=0,
287
+ ).reshape(dim, dim),
288
+ n_heads=n_heads,
289
+ )
290
+ state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
291
+ torch.cat(
292
+ [
293
+ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
294
+ num_key_value_heads_per_shard, dims_per_head, dim
295
+ )
296
+ for i in range(len(loaded))
297
+ ],
298
+ dim=0,
299
+ ).reshape(key_value_dim, dim),
300
+ num_key_value_heads,
301
+ key_value_dim,
302
+ dim,
303
+ )
304
+ state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
305
+ [
306
+ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
307
+ num_key_value_heads_per_shard, dims_per_head, dim
308
+ )
309
+ for i in range(len(loaded))
310
+ ],
311
+ dim=0,
312
+ ).reshape(key_value_dim, dim)
313
+
314
+ state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
315
+ [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1
316
+ )
317
+ state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
318
+ [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0
319
+ )
320
+ state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
321
+ [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1
322
+ )
323
+ state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
324
+ [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0
325
+ )
326
+
327
+ state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
328
+ for k, v in state_dict.items():
329
+ index_dict["weight_map"][k] = filename
330
+ param_count += v.numel()
331
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
332
+
333
+ filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
334
+ if num_shards == 1:
335
+ # Unsharded
336
+ state_dict = {
337
+ "model.embed_tokens.weight": loaded["tok_embeddings.weight"],
338
+ "model.norm.weight": loaded["norm.weight"],
339
+ "lm_head.weight": loaded["output.weight"],
340
+ }
341
+ else:
342
+ concat_dim = 0 if is_llama_3(llama_version) else 1
343
+ state_dict = {
344
+ "model.norm.weight": loaded[0]["norm.weight"],
345
+ "model.embed_tokens.weight": torch.cat(
346
+ [loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim
347
+ ),
348
+ "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),
349
+ }
350
+
351
+ for k, v in state_dict.items():
352
+ index_dict["weight_map"][k] = filename
353
+ param_count += v.numel()
354
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
355
+
356
+ # Write configs
357
+ index_dict["metadata"] = {"total_size": param_count * 2}
358
+ write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
359
+ ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
360
+ multiple_of = params["multiple_of"] if "multiple_of" in params else 256
361
+
362
+ if is_llama_3(llama_version):
363
+ bos_token_id = 128000
364
+
365
+ if instruct:
366
+ eos_token_id = [128001, 128008, 128009]
367
+ else:
368
+ eos_token_id = 128001
369
+ else:
370
+ bos_token_id = 1
371
+ eos_token_id = 2
372
+
373
+ if llama_version in ["3.1", "3.2", "Guard-3"]:
374
+ rope_scaling = {
375
+ "factor": 32.0 if llama_version == "3.2" else 8.0,
376
+ "low_freq_factor": 1.0,
377
+ "high_freq_factor": 4.0,
378
+ "original_max_position_embeddings": 8192,
379
+ "rope_type": "llama3",
380
+ }
381
+ else:
382
+ rope_scaling = None
383
+
384
+ config = LlamaConfig(
385
+ hidden_size=dim,
386
+ intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
387
+ num_attention_heads=params["n_heads"],
388
+ num_hidden_layers=params["n_layers"],
389
+ rms_norm_eps=params["norm_eps"],
390
+ num_key_value_heads=num_key_value_heads,
391
+ vocab_size=vocab_size,
392
+ rope_theta=base,
393
+ rope_scaling=rope_scaling,
394
+ max_position_embeddings=max_position_embeddings,
395
+ bos_token_id=bos_token_id,
396
+ eos_token_id=eos_token_id,
397
+ tie_word_embeddings=True if llama_version in ["3.2"] else False,
398
+ )
399
+
400
+ config.save_pretrained(tmp_model_path)
401
+
402
+ generation_config = GenerationConfig(
403
+ do_sample=True,
404
+ temperature=0.6,
405
+ top_p=0.9,
406
+ bos_token_id=bos_token_id,
407
+ eos_token_id=eos_token_id,
408
+ )
409
+ generation_config.save_pretrained(tmp_model_path)
410
+
411
+ # Make space so we can load the model properly now.
412
+ del state_dict
413
+ del loaded
414
+ gc.collect()
415
+
416
+ print("Loading the checkpoint in a Llama model.")
417
+ model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
418
+
419
+ # Avoid saving this as part of the config.
420
+ del model.config._name_or_path
421
+ model.config.torch_dtype = torch.float16
422
+
423
+ print("Saving in the Transformers format.")
424
+ if push_to_hub:
425
+ print("Pushing to the hub.")
426
+ model.push_to_hub(model_path, safe_serialization=safe_serialization, private=True, use_temp_dir=True)
427
+ else:
428
+ print("Saving to disk.")
429
+ model.save_pretrained(model_path, safe_serialization=safe_serialization)
430
+
431
+
432
+ class Llama3Converter(TikTokenConverter):
433
+ def __init__(self, vocab_file, special_tokens=None, instruct=False, llama_version="3.2", **kwargs):
434
+ super().__init__(vocab_file, additional_special_tokens=special_tokens, **kwargs)
435
+ tokenizer = self.converted()
436
+
437
+ # References for chat templates in instruct models
438
+ templates_for_version = {
439
+ "2": ("meta-llama/Llama-2-7b-chat-hf", "f5db02db724555f92da89c216ac04704f23d4590"),
440
+ "3": ("meta-llama/Meta-Llama-3-8B-Instruct", "5f0b02c75b57c5855da9ae460ce51323ea669d8a"),
441
+ "3.1": ("meta-llama/Llama-3.1-8B-Instruct", "0e9e39f249a16976918f6564b8830bc894c89659"),
442
+ "3.2": ("meta-llama/Llama-3.2-1B-Instruct", "e9f8effbab1cbdc515c11ee6e098e3d5a9f51e14"),
443
+ "Guard-3": ("meta-llama/Llama-Guard-3-1B", "acf7aafa60f0410f8f42b1fa35e077d705892029"),
444
+ }
445
+
446
+ # Add chat_template only if instruct is True.
447
+ # Prevents a null chat_template, which triggers
448
+ # a parsing warning in the Hub.
449
+ additional_kwargs = {}
450
+ if instruct or llama_version in ["Guard-3"]:
451
+ model_id, revision = templates_for_version.get(llama_version, (None, None))
452
+ if model_id is not None:
453
+ from transformers import AutoTokenizer
454
+
455
+ t = AutoTokenizer.from_pretrained(model_id, revision=revision)
456
+ additional_kwargs["chat_template"] = t.chat_template
457
+
458
+ self.converted_tokenizer = PreTrainedTokenizerFast(
459
+ tokenizer_object=tokenizer,
460
+ bos_token="<|begin_of_text|>",
461
+ eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
462
+ model_input_names=["input_ids", "attention_mask"],
463
+ model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version],
464
+ clean_up_tokenization_spaces=True,
465
+ **additional_kwargs,
466
+ )
467
+ self.update_post_processor(self.converted_tokenizer)
468
+ # finer special_tokens_map.json
469
+ self.converted_tokenizer._bos_token = BOS_ADDED_TOKEN
470
+ self.converted_tokenizer._eos_token = EOT_ADDED_TOKEN if instruct else EOS_ADDED_TOKEN
471
+
472
+ # We can't do this while building the tokenizer because we have no easy access to the bos token id
473
+ def update_post_processor(self, tokenizer):
474
+ tokenizer._tokenizer.post_processor = processors.Sequence(
475
+ [
476
+ processors.ByteLevel(trim_offsets=False),
477
+ processors.TemplateProcessing(
478
+ single="<|begin_of_text|> $A",
479
+ pair="<|begin_of_text|>:0 $A:0 <|begin_of_text|>:1 $B:1",
480
+ special_tokens=[
481
+ ("<|begin_of_text|>", tokenizer.convert_tokens_to_ids("<|begin_of_text|>")),
482
+ ],
483
+ ),
484
+ ]
485
+ )
486
+
487
+
488
+ def write_tokenizer(
489
+ tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False, push_to_hub=False
490
+ ):
491
+ print("Converting the tokenizer.")
492
+ tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
493
+ if is_llama_3(llama_version):
494
+ tokenizer = Llama3Converter(
495
+ input_tokenizer_path,
496
+ special_tokens,
497
+ instruct,
498
+ llama_version,
499
+ ).converted_tokenizer
500
+ else:
501
+ try:
502
+ tokenizer = tokenizer_class(input_tokenizer_path)
503
+ except Exception:
504
+ raise ValueError(
505
+ "Failed to instantiate tokenizer. Please, make sure you have sentencepiece and protobuf installed."
506
+ )
507
+
508
+ if push_to_hub:
509
+ print(f"Pushing a {tokenizer_class.__name__} to the Hub repo - {tokenizer_path}.")
510
+ tokenizer.push_to_hub(tokenizer_path, private=True, use_temp_dir=True)
511
+ else:
512
+ print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
513
+ tokenizer.save_pretrained(tokenizer_path)
514
+ return tokenizer
515
+
516
+
517
+ def main():
518
+ parser = argparse.ArgumentParser()
519
+ parser.add_argument(
520
+ "--input_dir",
521
+ help="Location of Llama weights, which contains tokenizer.model and model folders",
522
+ )
523
+ parser.add_argument(
524
+ "--model_size",
525
+ default=None,
526
+ help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama",
527
+ )
528
+ parser.add_argument(
529
+ "--output_dir",
530
+ help="Location to write HF model and tokenizer",
531
+ )
532
+ parser.add_argument(
533
+ "--push_to_hub",
534
+ help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.",
535
+ action="store_true",
536
+ default=False,
537
+ )
538
+ parser.add_argument(
539
+ "--safe_serialization", action="store_true", default=True, help="Whether or not to save using `safetensors`."
540
+ )
541
+ # Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
542
+ parser.add_argument(
543
+ "--llama_version",
544
+ choices=["1", "2", "3", "3.1", "3.2", "Guard-3"],
545
+ default="1",
546
+ type=str,
547
+ help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
548
+ )
549
+ parser.add_argument(
550
+ "--num_shards",
551
+ default=None,
552
+ type=int,
553
+ help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
554
+ )
555
+ parser.add_argument(
556
+ "--special_tokens",
557
+ default=None,
558
+ type=List[str],
559
+ help="The list of special tokens that should be added to the model.",
560
+ )
561
+ parser.add_argument(
562
+ "--instruct",
563
+ action="store_true",
564
+ default=False,
565
+ help="Whether the model is an instruct model or not. Will affect special tokens and chat template.",
566
+ )
567
+ args = parser.parse_args()
568
+ if args.model_size is None and args.num_shards is None:
569
+ raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
570
+ if args.special_tokens is None:
571
+ # no special tokens by default
572
+ args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS.get(str(args.llama_version), [])
573
+
574
+ spm_path = os.path.join(args.input_dir, "tokenizer.model")
575
+ vocab_size = len(
576
+ write_tokenizer(
577
+ args.output_dir,
578
+ spm_path,
579
+ llama_version=args.llama_version,
580
+ special_tokens=args.special_tokens,
581
+ instruct=args.instruct,
582
+ push_to_hub=args.push_to_hub,
583
+ )
584
+ )
585
+
586
+ if args.model_size != "tokenizer_only":
587
+ write_model(
588
+ model_path=args.output_dir,
589
+ input_base_path=args.input_dir,
590
+ model_size=args.model_size,
591
+ safe_serialization=args.safe_serialization,
592
+ llama_version=args.llama_version,
593
+ vocab_size=vocab_size,
594
+ num_shards=args.num_shards,
595
+ instruct=args.instruct,
596
+ push_to_hub=args.push_to_hub,
597
+ )
598
+
599
+
600
+ if __name__ == "__main__":
601
+ main()
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch
4
+
5
+ tiktoken
6
+ blobfile
7
+ sentencepiece
8
+ einops
9
+ accelerate
10
+ fastapi
11
+ uvicorn