Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# 加载模型和 tokenizer | |
model_name = "LilithHu/mbert-manipulative-detector" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# 设置为评估模式 | |
model.eval() | |
# 设置运行设备 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# 标签名 | |
labels = ["Non-manipulative / 非操纵性", "Manipulative / 操纵性"] | |
# 推理函数 | |
def classify(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probs = torch.softmax(outputs.logits, dim=1)[0] # 取第一个样本的概率向量 | |
probs = torch.clamp(probs, max=0.95) # 限制最大置信度为 95% | |
result = "🧠 预测 / Prediction:\n" | |
for i, label in enumerate(labels): | |
percent = round(probs[i].item() * 100, 2) | |
result += f"{label}: {percent}%\n" | |
return result | |
# Gradio 界面 | |
interface = gr.Interface( | |
fn=classify, | |
inputs=gr.Textbox(lines=4, placeholder="Enter text in English or Chinese... / 输入中文或英文句子"), | |
outputs="text", | |
title="🔍 Manipulative Language Detector / 操纵性语言识别器", | |
description="🧪 输入英文或中文句子,系统将判断其是否包含操纵性语言。\nEnter a sentence in English or Chinese to detect if it's manipulative.", | |
) | |
interface.launch() | |