import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # 加载模型和 tokenizer model_name = "LilithHu/mbert-manipulative-detector" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # 设置为评估模式 model.eval() # 设置运行设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 标签名 labels = ["Non-manipulative / 非操纵性", "Manipulative / 操纵性"] # 推理函数 def classify(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) with torch.no_grad(): outputs = model(**inputs) probs = torch.softmax(outputs.logits, dim=1)[0] # 取第一个样本的概率向量 probs = torch.clamp(probs, max=0.95) # 限制最大置信度为 95% result = "🧠 预测 / Prediction:\n" for i, label in enumerate(labels): percent = round(probs[i].item() * 100, 2) result += f"{label}: {percent}%\n" return result # Gradio 界面 interface = gr.Interface( fn=classify, inputs=gr.Textbox(lines=4, placeholder="Enter text in English or Chinese... / 输入中文或英文句子"), outputs="text", title="🔍 Manipulative Language Detector / 操纵性语言识别器", description="🧪 输入英文或中文句子,系统将判断其是否包含操纵性语言。\nEnter a sentence in English or Chinese to detect if it's manipulative.", ) interface.launch()