File size: 2,899 Bytes
22db0eb
 
 
 
1e3779f
22db0eb
 
 
 
1e3779f
 
 
 
 
 
 
 
22db0eb
 
1e3779f
22db0eb
1e3779f
22db0eb
3662b93
2cb5c95
e25e3be
 
 
 
 
 
 
 
 
2cb5c95
ac74601
3662b93
fde1d98
e25e3be
 
 
22db0eb
 
 
 
3662b93
 
55c0410
 
3662b93
55c0410
 
6d27a75
55c0410
3662b93
55c0410
3662b93
6d27a75
3143491
55c0410
3662b93
 
ff91fbe
3662b93
55c0410
636f520
 
 
55c0410
 
 
8055a6c
3662b93
6d27a75
fb2aa26
93db1dd
fb2aa26
f326936
93db1dd
f326936
6d27a75
3662b93
 
22db0eb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# 加载模型和 tokenizer
model_name = "LilithHu/mbert-manipulative-detector"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# 设置为评估模式
model.eval()

# 设置运行设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 标签名
labels = ["Non-manipulative / 非操纵性", "Manipulative / 操纵性"]

# 推理函数
def classify(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.softmax(outputs.logits, dim=1)[0]
        
        threshold = 0.7  # 自定义阈值(你可以改成别的)
        if probs[1].item() > threshold:
            pred = 1  # 判为操纵性
        else:
            pred = 0  # 判为非操纵性

        confidence = min(probs[pred].item(), 0.95)  # 置信度依然可以控制上限

        percent = round(confidence * 100, 2)
        result = f"Prediction / 预测:\n{labels[pred]}\n"
        return result

#谁大选谁        
#pred = torch.argmax(probs).item()
#confidence = min(probs[pred].item(), 0.95)  # 限制置信度最大为95%

# Gradio 界面
interface = gr.Interface(
    fn=classify,
    inputs=gr.Textbox(
        lines=4, 
        placeholder="Enter text in English or Chinese... ",
        label="📝 Input Text"
    ),
    outputs=gr.Markdown(label="📊 Prediction"),
    title="🔍 Manipulative Language Detector",
    description="""
🧪 Enter a sentence in English or Chinese to detect if it's manipulative.  

📌 **Disclaimer**  
This system is for **research and educational purposes only**.  
It **does not guarantee accuracy** and **should not be used as legal or clinical evidence**.  

🤖 **Model Info**
- Model: `LilithHu/mbert-manipulative-detector`  
- Base: `mDeBERTa-v3` multilingual pre-trained model  
- Fine-tuned using HuggingFace Transformers on 10,000 labeled Chinese data  

⚠️ **About Examples**
The examples provided below are those **cited in the paper**, including implicit moral coercion, polite masking and false positives.


🌐 **Built with Gradio and hosted on HuggingFace Spaces**



""",
    examples=[
        ["A good kid would never act like this"],
        ["hi, your mother is tired, can you just do whatever she says"],
        ["I feel so sad when you don’t listen to me."],
        ["If you are willing to help, it doesn’t matter if you are not... let it go, i know my position"],
        ["If you take that job, don’t call me mom again."],
        ["I’ve sacrificed my whole life for you, how could you treat me this way "]
    ],
    theme="default",
    allow_flagging="never"
)

interface.launch()