LilithHu commited on
Commit
22db0eb
·
verified ·
1 Parent(s): e1a6b68

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # 加载模型
6
+ model_name = "LilithHu/mbert-manipulative-detector"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # 二分类标签(非操纵性是0,操纵性是1)
11
+ labels = ["Non-manipulative / 非操纵性", "Manipulative / 操纵性"]
12
+
13
+ def classify(text):
14
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
15
+ with torch.no_grad():
16
+ outputs = model(**inputs)
17
+ probs = torch.softmax(outputs.logits, dim=1)
18
+ pred = torch.argmax(probs, dim=1).item()
19
+ confidence = probs[0][pred].item()
20
+ return f"🧠 预测 / Prediction: {labels[pred]}\n📊 置信度 / Confidence: {confidence:.2%}"
21
+
22
+ # Gradio 界面
23
+ interface = gr.Interface(
24
+ fn=classify,
25
+ inputs=gr.Textbox(lines=4, placeholder="Enter text in English or Chinese... / 输入中文或英文句子"),
26
+ outputs="text",
27
+ title="🔍 Manipulative Language Detector / 操纵性语言识别器",
28
+ description="🧪 输入英文或中文句子,系统将判断其是否包含操纵性语言。\nEnter a sentence in English or Chinese to detect if it's manipulative.",
29
+ examples=[
30
+ ["If you really cared, you'd do what I say."],
31
+ ["你不爱我就证明给我看!"],
32
+ ["今天的天气真不错。"]
33
+ ]
34
+ )
35
+
36
+ interface.launch()