Spaces:
Sleeping
Sleeping
File size: 1,473 Bytes
22db0eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 加载模型
model_name = "LilithHu/mbert-manipulative-detector"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# 二分类标签(非操纵性是0,操纵性是1)
labels = ["Non-manipulative / 非操纵性", "Manipulative / 操纵性"]
def classify(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
confidence = probs[0][pred].item()
return f"🧠 预测 / Prediction: {labels[pred]}\n📊 置信度 / Confidence: {confidence:.2%}"
# Gradio 界面
interface = gr.Interface(
fn=classify,
inputs=gr.Textbox(lines=4, placeholder="Enter text in English or Chinese... / 输入中文或英文句子"),
outputs="text",
title="🔍 Manipulative Language Detector / 操纵性语言识别器",
description="🧪 输入英文或中文句子,系统将判断其是否包含操纵性语言。\nEnter a sentence in English or Chinese to detect if it's manipulative.",
examples=[
["If you really cared, you'd do what I say."],
["你不爱我就证明给我看!"],
["今天的天气真不错。"]
]
)
interface.launch()
|