Spaces:
Runtime error
Runtime error
# MiDaS for ROS1 by using LibTorch in C++ | |
### Requirements | |
- Ubuntu 17.10 / 18.04 / 20.04, Debian Stretch | |
- ROS Melodic for Ubuntu (17.10 / 18.04) / Debian Stretch, ROS Noetic for Ubuntu 20.04 | |
- C++11 | |
- LibTorch >= 1.6 | |
## Quick Start with a MiDaS Example | |
MiDaS is a neural network to compute depth from a single image. | |
* input from `image_topic`: `sensor_msgs/Image` - `RGB8` image with any shape | |
* output to `midas_topic`: `sensor_msgs/Image` - `TYPE_32FC1` inverse relative depth maps in range [0 - 255] with original size and channels=1 | |
### Install Dependecies | |
* install ROS Melodic for Ubuntu 17.10 / 18.04: | |
```bash | |
wget https://raw.githubusercontent.com/intel-isl/MiDaS/master/ros/additions/install_ros_melodic_ubuntu_17_18.sh | |
./install_ros_melodic_ubuntu_17_18.sh | |
``` | |
or Noetic for Ubuntu 20.04: | |
```bash | |
wget https://raw.githubusercontent.com/intel-isl/MiDaS/master/ros/additions/install_ros_noetic_ubuntu_20.sh | |
./install_ros_noetic_ubuntu_20.sh | |
``` | |
* install LibTorch 1.7 with CUDA 11.0: | |
On **Jetson (ARM)**: | |
```bash | |
wget https://nvidia.box.com/shared/static/wa34qwrwtk9njtyarwt5nvo6imenfy26.whl -O torch-1.7.0-cp36-cp36m-linux_aarch64.whl | |
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev | |
pip3 install Cython | |
pip3 install numpy torch-1.7.0-cp36-cp36m-linux_aarch64.whl | |
``` | |
Or compile LibTorch from source: https://github.com/pytorch/pytorch#from-source | |
On **Linux (x86_64)**: | |
```bash | |
cd ~/ | |
wget https://download.pytorch.org/libtorch/cu110/libtorch-cxx11-abi-shared-with-deps-1.7.0%2Bcu110.zip | |
unzip libtorch-cxx11-abi-shared-with-deps-1.7.0+cu110.zip | |
``` | |
* create symlink for OpenCV: | |
```bash | |
sudo ln -s /usr/include/opencv4 /usr/include/opencv | |
``` | |
* download and install MiDaS: | |
```bash | |
source ~/.bashrc | |
cd ~/ | |
mkdir catkin_ws | |
cd catkin_ws | |
git clone https://github.com/intel-isl/MiDaS | |
mkdir src | |
cp -r MiDaS/ros/* src | |
chmod +x src/additions/*.sh | |
chmod +x src/*.sh | |
chmod +x src/midas_cpp/scripts/*.py | |
cp src/additions/do_catkin_make.sh ./do_catkin_make.sh | |
./do_catkin_make.sh | |
./src/additions/downloads.sh | |
``` | |
### Usage | |
* run only `midas` node: `~/catkin_ws/src/launch_midas_cpp.sh` | |
#### Test | |
* Test - capture video and show result in the window: | |
* place any `test.mp4` video file to the directory `~/catkin_ws/src/` | |
* run `midas` node: `~/catkin_ws/src/launch_midas_cpp.sh` | |
* run test nodes in another terminal: `cd ~/catkin_ws/src && ./run_talker_listener_test.sh` and wait 30 seconds | |
(to use Python 2, run command `sed -i 's/python3/python2/' ~/catkin_ws/src/midas_cpp/scripts/*.py` ) | |
## Mobile version of MiDaS - Monocular Depth Estimation | |
### Accuracy | |
* Old small model - ResNet50 default-decoder 384x384 | |
* New small model - EfficientNet-Lite3 small-decoder 256x256 | |
**Zero-shot error** (the lower - the better): | |
| Model | DIW WHDR | Eth3d AbsRel | Sintel AbsRel | Kitti δ>1.25 | NyuDepthV2 δ>1.25 | TUM δ>1.25 | | |
|---|---|---|---|---|---|---| | |
| Old small model 384x384 | **0.1248** | 0.1550 | **0.3300** | **21.81** | 15.73 | 17.00 | | |
| New small model 256x256 | 0.1344 | **0.1344** | 0.3370 | 29.27 | **13.43** | **14.53** | | |
| Relative improvement, % | -8 % | **+13 %** | -2 % | -34 % | **+15 %** | **+15 %** | | |
None of Train/Valid/Test subsets of datasets (DIW, Eth3d, Sintel, Kitti, NyuDepthV2, TUM) were not involved in Training or Fine Tuning. | |
### Inference speed (FPS) on nVidia GPU | |
Inference speed excluding pre and post processing, batch=1, **Frames Per Second** (the higher - the better): | |
| Model | Jetson Nano, FPS | RTX 2080Ti, FPS | | |
|---|---|---| | |
| Old small model 384x384 | 1.6 | 117 | | |
| New small model 256x256 | 8.1 | 232 | | |
| SpeedUp, X times | **5x** | **2x** | | |
### Citation | |
This repository contains code to compute depth from a single image. It accompanies our [paper](https://arxiv.org/abs/1907.01341v3): | |
>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer | |
René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, Vladlen Koltun | |
Please cite our paper if you use this code or any of the models: | |
``` | |
@article{Ranftl2020, | |
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun}, | |
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer}, | |
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, | |
year = {2020}, | |
} | |
``` |