File size: 18,346 Bytes
eaa53b6
5a1b4a9
 
 
 
 
 
 
 
634e57c
837c39f
80e76bd
634e57c
 
837c39f
634e57c
 
ae3ae65
 
634e57c
 
 
ae3ae65
 
 
 
 
 
80e76bd
 
 
 
 
5a1b4a9
634e57c
5a1b4a9
 
634e57c
 
5a1b4a9
 
837c39f
 
 
 
 
eaa53b6
837c39f
 
 
 
 
 
 
 
 
 
5a1b4a9
837c39f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a1b4a9
eaa53b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634e57c
5a1b4a9
634e57c
5a1b4a9
837c39f
eaa53b6
5a1b4a9
837c39f
634e57c
5a1b4a9
8370bad
 
 
ae3ae65
 
 
 
837c39f
 
ae3ae65
 
 
 
 
 
837c39f
 
ae3ae65
 
5a1b4a9
634e57c
5a1b4a9
634e57c
837c39f
5a1b4a9
634e57c
5a1b4a9
634e57c
 
837c39f
 
634e57c
 
 
 
 
5a1b4a9
634e57c
5a1b4a9
837c39f
5a1b4a9
 
 
837c39f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634e57c
837c39f
634e57c
 
 
 
 
 
837c39f
 
eaa53b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837c39f
 
 
 
eaa53b6
 
837c39f
 
 
 
 
 
 
 
634e57c
eaa53b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634e57c
837c39f
eaa53b6
634e57c
837c39f
 
 
 
 
 
 
 
 
 
eaa53b6
 
634e57c
837c39f
634e57c
 
 
837c39f
634e57c
837c39f
 
634e57c
837c39f
634e57c
 
837c39f
634e57c
837c39f
 
634e57c
837c39f
 
 
634e57c
837c39f
634e57c
837c39f
 
 
 
 
 
 
 
 
634e57c
eaa53b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634e57c
eaa53b6
634e57c
 
5a1b4a9
 
634e57c
837c39f
634e57c
5a1b4a9
634e57c
5a1b4a9
eaa53b6
 
 
 
 
 
 
 
 
 
634e57c
5a1b4a9
 
 
 
837c39f
5a1b4a9
634e57c
 
 
 
 
 
 
5a1b4a9
837c39f
 
eaa53b6
837c39f
 
 
634e57c
5a1b4a9
eaa53b6
 
 
 
 
634e57c
 
837c39f
634e57c
837c39f
 
eaa53b6
634e57c
837c39f
 
 
eaa53b6
 
 
 
837c39f
eaa53b6
 
 
 
 
 
 
837c39f
 
eaa53b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634e57c
 
 
837c39f
634e57c
 
837c39f
eaa53b6
837c39f
 
 
 
eaa53b6
 
 
 
 
 
 
 
 
634e57c
837c39f
 
 
eaa53b6
837c39f
5a1b4a9
eaa53b6
5a1b4a9
837c39f
 
eaa53b6
837c39f
 
 
eaa53b6
 
 
 
 
837c39f
5a1b4a9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# app.py - Advanced Discussion Simulator with Hexa-Agent System
import gradio as gr
import openai
import threading
import time
import numpy as np
import faiss
import os
import pickle
from datetime import datetime
import re

# === CONFIG ===
EMBEDDING_MODEL = "text-embedding-3-small"
CHAT_MODEL = "gpt-4o"
MEMORY_FILE = "memory.pkl"
INDEX_FILE = "memory.index"
openai.api_key = os.environ.get("OPENAI_API_KEY")

# === EMBEDDING UTILS ===
def get_embedding(text, model=EMBEDDING_MODEL):
    text = text.replace("\n", " ")
    try:
        response = openai.embeddings.create(input=[text], model=model)
        return response.data[0].embedding
    except AttributeError:
        response = openai.Embedding.create(input=[text], model=model)
        return response['data'][0]['embedding']

def cosine_similarity(vec1, vec2):
    vec1 = np.array(vec1)
    vec2 = np.array(vec2)
    return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))

# === MEMORY INITIALIZATION ===
memory_data = []
try:
    memory_index = faiss.read_index(INDEX_FILE)
    with open(MEMORY_FILE, "rb") as f:
        memory_data = pickle.load(f)
except:
    memory_index = faiss.IndexFlatL2(1536)

# === AGENT SYSTEM PROMPTS ===
AGENT_A_PROMPT = """You are the Discussion Initiator. Your role:
1. Introduce complex topics requiring multidisciplinary perspectives
2. Frame debates exploring tensions between values, ethics, and progress
3. Challenge assumptions while maintaining intellectual humility
4. Connect concepts across domains (science, ethics, policy, technology)
5. Elevate discussions beyond surface-level analysis"""

AGENT_B_PROMPT = """You are the Critical Responder. Your role:
1. Provide counterpoints with evidence-based reasoning
2. Identify logical fallacies and cognitive biases in arguments
3. Analyze implications at different scales (individual, societal, global)
4. Consider second and third-order consequences
5. Balance idealism with practical constraints"""

OVERSEER_PROMPT = """You are the Depth Guardian. Your role:
1. Ensure discussions maintain intellectual rigor
2. Intervene when conversations become superficial or repetitive
3. Highlight unexamined assumptions and blind spots
4. Introduce relevant frameworks (systems thinking, ethical paradigms)
5. Prompt consideration of marginalized perspectives
6. Synthesize key tensions and paradoxes"""

OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role:
1. Introduce radical perspectives from unrelated fields
2. Challenge conventional wisdom with contrarian viewpoints
3. Surface historical precedents and analogies
4. Propose unconventional solutions to complex problems
5. Highlight overlooked connections and systemic relationships
6. Question the framing of the discussion itself"""

CULTURAL_LENS_PROMPT = """You are the Cultural Perspective. Your role:
1. Provide viewpoints from diverse global cultures (Eastern, Western, Indigenous, African, etc.)
2. Highlight how cultural values shape perspectives on the topic
3. Identify cultural biases in arguments and assumptions
4. Share traditions and practices relevant to the discussion
5. Suggest culturally inclusive approaches to solutions
6. Bridge cultural divides through nuanced understanding
7. Consider post-colonial and decolonial perspectives"""

JUDGE_PROMPT = """You are the Impartial Judge. Your role:
1. Periodically review the discussion and provide balanced rulings
2. Identify areas of agreement and unresolved tensions
3. Evaluate the strength of arguments from different perspectives
4. Highlight the most compelling insights and critical flaws
5. Suggest pathways toward resolution or further inquiry
6. Deliver rulings with clear justification and constructive guidance
7. Maintain objectivity while acknowledging valid points from all sides
8. Consider ethical implications and practical feasibility"""

# === GLOBAL STATE ===
conversation = []
turn_count = 0
auto_mode = False
current_topic = ""
last_ruling_turn = 0

# === CHAT COMPLETION ===
def chat_completion(system, messages, model=CHAT_MODEL):
    try:
        full_messages = [{"role": "system", "content": system}] 
        full_messages.extend(messages)
        
        try:
            response = openai.chat.completions.create(
                model=model,
                messages=full_messages,
                temperature=0.75,
                max_tokens=300
            )
            return response.choices[0].message.content.strip()
        except AttributeError:
            response = openai.ChatCompletion.create(
                model=model,
                messages=full_messages,
                temperature=0.75,
                max_tokens=300
            )
            return response['choices'][0]['message']['content'].strip()
    except Exception as e:
        return f"[API Error: {str(e)}]"

# === MEMORY MANAGEMENT ===
def embed_and_store(text, agent=None):
    try:
        vec = get_embedding(text)
        memory_index.add(np.array([vec], dtype='float32'))
        memory_data.append({
            "text": text,
            "timestamp": datetime.now().isoformat(),
            "agent": agent or "system"
        })
        if len(memory_data) % 5 == 0:
            with open(MEMORY_FILE, "wb") as f:
                pickle.dump(memory_data, f)
            faiss.write_index(memory_index, INDEX_FILE)
    except Exception as e:
        print(f"Memory Error: {str(e)}")

# === CONVERSATION UTILITIES ===
def format_convo():
    return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation])

def detect_superficiality():
    """Detect shallow arguments using linguistic analysis"""
    if len(conversation) < 3:
        return False
        
    last_texts = [m['text'] for m in conversation[-3:]]
    
    # Linguistic markers of superficiality
    superficial_indicators = [
        r"\b(obviously|clearly|everyone knows)\b",
        r"\b(simply|just|merely)\b",
        r"\b(always|never)\b",
        r"\b(I (think|believe|feel))\b",
        r"\b(without question|undeniably)\b"
    ]
    
    # Argument depth markers
    depth_markers = [
        r"\b(however|conversely|paradoxically)\b",
        r"\b(evidence suggests|studies indicate)\b",
        r"\b(complex interplay|multifaceted nature)\b",
        r"\b(trade-off|tension between)\b",
        r"\b(historical precedent|comparative analysis)\b"
    ]
    
    superficial_count = 0
    depth_count = 0
    
    for text in last_texts:
        for pattern in superficial_indicators:
            if re.search(pattern, text, re.IGNORECASE):
                superficial_count += 1
        for pattern in depth_markers:
            if re.search(pattern, text, re.IGNORECASE):
                depth_count += 1
                
    return superficial_count > depth_count * 2

def detect_repetition():
    """Check if recent messages are conceptually similar"""
    if len(conversation) < 4:
        return False
        
    recent = [m['text'] for m in conversation[-4:]]
    embeddings = [get_embedding(text) for text in recent]
    similarity = cosine_similarity(embeddings[-1], embeddings[-3])
    return similarity > 0.82

def detect_cultural_relevance():
    """Check if cultural perspectives are needed"""
    if len(conversation) < 2:
        return False
        
    last_texts = " ".join([m['text'] for m in conversation[-2:]])
    cultural_triggers = [
        "society", "culture", "values", "tradition",
        "global", "western", "eastern", "indigenous",
        "community", "norms", "beliefs", "diversity",
        "equity", "identity", "heritage", "colonial"
    ]
    
    for trigger in cultural_triggers:
        if trigger in last_texts.lower():
            return True
    return False

def detect_judgment_opportunity():
    """Identify when the discussion is ripe for judgment"""
    if len(conversation) < 8:
        return False
        
    # Check for unresolved tensions
    last_texts = " ".join([m['text'] for m in conversation[-4:]])
    judgment_triggers = [
        "tension", "dilemma", "paradox", "conflict",
        "disagreement", "opposing views", "unresolved",
        "contradiction", "impasse", "standoff"
    ]
    
    for trigger in judgment_triggers:
        if trigger in last_texts.lower():
            return True
    return False

# === AGENT FUNCTIONS ===
def generate_topic():
    """Generate a complex discussion topic"""
    topic = chat_completion(
        "Generate a complex discussion topic requiring multidisciplinary and multicultural analysis",
        [{"role": "user", "content": "Create a topic addressing tensions between technological progress, ethics, and cultural values"}]
    )
    return topic.split(":")[-1].strip() if ":" in topic else topic

def outsider_comment():
    """Generate outsider perspective"""
    context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]])
    prompt = f"Conversation Context:\n{context}\n\nProvide your cross-disciplinary perspective:"
    return chat_completion(OUTSIDER_PROMPT, [{"role": "user", "content": prompt}])

def cultural_perspective():
    """Generate cultural diversity perspective"""
    context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]])
    prompt = f"Conversation Context:\n{context}\n\nProvide diverse cultural perspectives on this topic:"
    return chat_completion(CULTURAL_LENS_PROMPT, [{"role": "user", "content": prompt}])

def judge_ruling():
    """Generate final judgment or ruling"""
    global last_ruling_turn
    
    # Create comprehensive context
    context = "\n\n".join([
        f"Discussion Topic: {current_topic}",
        "Key Arguments:",
        *[f"- {m['agent']}: {m['text']}" for m in conversation[-8:]]
    ])
    
    prompt = f"""After reviewing this discussion, provide your impartial judgment:
{context}

Your ruling should:
1. Identify areas of agreement and unresolved tensions
2. Evaluate the strength of key arguments
3. Highlight the most compelling insights
4. Suggest pathways toward resolution
5. Consider ethical and practical implications
6. Provide constructive guidance for next steps"""
    
    ruling = chat_completion(JUDGE_PROMPT, [{"role": "user", "content": prompt}])
    last_ruling_turn = turn_count
    return ruling

# === CORE CONVERSATION FLOW ===
def step(topic_input=""):
    global conversation, turn_count, current_topic, last_ruling_turn
    
    # Initialize new discussion
    if not conversation:  
        current_topic = topic_input or generate_topic()
        msg = chat_completion(
            AGENT_A_PROMPT, 
            [{"role": "user", "content": f"Initiate a deep discussion on: {current_topic}"}]
        )
        conversation.append({"agent": "πŸ’‘ Initiator", "text": msg})
        embed_and_store(msg, "Initiator")
        turn_count = 1
        last_ruling_turn = 0
        return format_convo(), "", "", "", "", current_topic
    
    # Critical Responder engages
    last_msg = conversation[-1]['text']
    b_msg = chat_completion(
        AGENT_B_PROMPT, 
        [{"role": "user", "content": f"Topic: {current_topic}\n\nLast statement: {last_msg}"}]
    )
    conversation.append({"agent": "πŸ” Responder", "text": b_msg})
    embed_and_store(b_msg, "Responder")
    
    # Initiator counters
    a_msg = chat_completion(
        AGENT_A_PROMPT, 
        [{"role": "user", "content": f"Topic: {current_topic}\n\nCritical response: {b_msg}"}]
    )
    conversation.append({"agent": "πŸ’‘ Initiator", "text": a_msg})
    embed_and_store(a_msg, "Initiator")
    
    # Overseer intervention
    intervention = ""
    if turn_count % 3 == 0 or detect_repetition() or detect_superficiality():
        context = "\n".join([m['text'] for m in conversation[-4:]])
        prompt = f"Topic: {current_topic}\n\nDiscussion Context:\n{context}\n\nDeepen the analysis:"
        intervention = chat_completion(OVERSEER_PROMPT, [{"role": "user", "content": prompt}])
        conversation.append({"agent": "βš–οΈ Depth Guardian", "text": intervention})
        embed_and_store(intervention, "Overseer")
    
    # Outsider commentary
    outsider_msg = ""
    if turn_count % 4 == 0 or "paradox" in last_msg.lower():
        outsider_msg = outsider_comment()
        conversation.append({"agent": "🌐 Provocateur", "text": outsider_msg})
        embed_and_store(outsider_msg, "Outsider")
    
    # Cultural perspective
    cultural_msg = ""
    if turn_count % 5 == 0 or detect_cultural_relevance():
        cultural_msg = cultural_perspective()
        conversation.append({"agent": "🌍 Cultural Lens", "text": cultural_msg})
        embed_and_store(cultural_msg, "Cultural")
    
    # Judge ruling
    judge_msg = ""
    ruling_interval = 6  # Turns between rulings
    if (turn_count - last_ruling_turn >= ruling_interval and 
        (turn_count % ruling_interval == 0 or detect_judgment_opportunity())):
        judge_msg = judge_ruling()
        conversation.append({"agent": "βš–οΈ Judge", "text": judge_msg})
        embed_and_store(judge_msg, "Judge")
    
    turn_count += 1
    return format_convo(), intervention, outsider_msg, cultural_msg, judge_msg, current_topic

# === OVERSEER QUERY HANDLER ===
def overseer_respond(query):
    try:
        context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
        messages = [{"role": "user", "content": f"Discussion Topic: {current_topic}\n\nRecent context:\n{context}\n\nQuery: {query}"}]
        return chat_completion(OVERSEER_PROMPT, messages)
    except Exception as e:
        return f"[Overseer Error: {str(e)}]"

# === JUDGE RULING HANDLER ===
def request_ruling():
    try:
        ruling = judge_ruling()
        conversation.append({"agent": "βš–οΈ Judge", "text": ruling})
        embed_and_store(ruling, "Judge")
        return ruling
    except Exception as e:
        return f"[Judge Error: {str(e)}]"

# === AUTO MODE HANDLER ===
def auto_loop():
    global auto_mode
    while auto_mode:
        step()
        time.sleep(6)

def toggle_auto():
    global auto_mode
    auto_mode = not auto_mode
    if auto_mode:
        threading.Thread(target=auto_loop, daemon=True).start()
    return "πŸ”΄ Auto: OFF" if not auto_mode else "🟒 Auto: ON"

# === GRADIO UI ===
with gr.Blocks(title="Advanced Discussion Simulator") as demo:
    gr.Markdown("# 🧠 Advanced Discussion Simulator")
    gr.Markdown("### Hexa-Agent System for Complex Discourse")
    
    with gr.Row():
        topic_display = gr.Textbox(label="Current Topic", interactive=False)
    
    with gr.Row():
        convo_display = gr.Markdown(
            value="**Discussion will appear here**", 
            elem_id="convo-display",
            elem_classes="convo-scroll"
        )
        
    with gr.Row():
        step_btn = gr.Button("▢️ Next Turn", variant="primary")
        auto_btn = gr.Button("πŸ”΄ Auto: OFF", variant="secondary")
        clear_btn = gr.Button("πŸ”„ New Discussion", variant="stop")
        topic_btn = gr.Button("🎲 Random Topic", variant="secondary")
        ruling_btn = gr.Button("βš–οΈ Request Ruling", variant="primary")
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### βš–οΈ Depth Guardian")
            intervention_display = gr.Textbox(label="", interactive=False)
        with gr.Column(scale=1):
            gr.Markdown("### 🌐 Cross-Disciplinary")
            outsider_display = gr.Textbox(label="", interactive=False)
        with gr.Column(scale=1):
            gr.Markdown("### 🌍 Cultural Lens")
            cultural_display = gr.Textbox(label="", interactive=False)
    
    with gr.Row():
        with gr.Column(scale=3):
            gr.Markdown("### βš–οΈ Final Judgment")
            judge_display = gr.Textbox(label="", interactive=False, lines=4)
    
    with gr.Accordion("πŸ’¬ Guide the Discussion", open=False):
        topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of AGI in cultural contexts...")
        with gr.Row():
            qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing?")
            ruling_qbox = gr.Textbox(label="Specific Question for Judge", placeholder="What should be our guiding principle?")
        with gr.Row():
            overseer_out = gr.Textbox(label="Depth Guardian Response", interactive=False)
            judge_out = gr.Textbox(label="Judge's Response", interactive=False)
    
    # Custom CSS for scrollable conversation
    demo.css = """
    .convo-scroll {
        max-height: 400px;
        overflow-y: auto;
        padding: 10px;
        border: 1px solid #e0e0e0;
        border-radius: 5px;
    }
    """
    
    # Event handlers
    def clear_convo():
        global conversation, turn_count, current_topic
        conversation = []
        turn_count = 0
        current_topic = ""
        return "**New discussion started**", "", "", "", "", "", ""
    
    def new_topic():
        clear_convo()
        topic = generate_topic()
        return "", "", "", "", "", topic, topic
    
    def ask_judge(query):
        try:
            context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
            messages = [{"role": "user", "content": f"Discussion Topic: {current_topic}\n\nRecent context:\n{context}\n\nSpecific Question: {query}"}]
            return chat_completion(JUDGE_PROMPT, messages)
        except Exception as e:
            return f"[Judge Error: {str(e)}]"
    
    step_btn.click(
        step, 
        inputs=[topic_input],
        outputs=[convo_display, intervention_display, outsider_display, cultural_display, judge_display, topic_display]
    )
    qbox.submit(overseer_respond, inputs=qbox, outputs=overseer_out)
    ruling_qbox.submit(ask_judge, inputs=ruling_qbox, outputs=judge_out)
    auto_btn.click(toggle_auto, outputs=auto_btn)
    clear_btn.click(
        clear_convo, 
        outputs=[convo_display, intervention_display, outsider_display, cultural_display, judge_display, topic_display, overseer_out]
    )
    topic_btn.click(
        new_topic,
        outputs=[convo_display, intervention_display, outsider_display, cultural_display, judge_display, topic_display, overseer_out]
    )
    ruling_btn.click(
        request_ruling,
        outputs=[judge_display]
    )

demo.launch()