Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
import openai
|
| 4 |
import threading
|
|
@@ -8,27 +8,22 @@ import faiss
|
|
| 8 |
import os
|
| 9 |
import pickle
|
| 10 |
from datetime import datetime
|
|
|
|
| 11 |
|
| 12 |
# === CONFIG ===
|
| 13 |
EMBEDDING_MODEL = "text-embedding-3-small"
|
| 14 |
-
CHAT_MODEL = "gpt-4o"
|
| 15 |
MEMORY_FILE = "memory.pkl"
|
| 16 |
INDEX_FILE = "memory.index"
|
| 17 |
-
|
| 18 |
-
# Initialize OpenAI API
|
| 19 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
| 20 |
|
| 21 |
# === EMBEDDING UTILS ===
|
| 22 |
def get_embedding(text, model=EMBEDDING_MODEL):
|
| 23 |
text = text.replace("\n", " ")
|
| 24 |
-
|
| 25 |
-
# Compatible API call for both v0.x and v1.x
|
| 26 |
try:
|
| 27 |
-
# Try v1.x API first
|
| 28 |
response = openai.embeddings.create(input=[text], model=model)
|
| 29 |
return response.data[0].embedding
|
| 30 |
except AttributeError:
|
| 31 |
-
# Fallback to v0.x API
|
| 32 |
response = openai.Embedding.create(input=[text], model=model)
|
| 33 |
return response['data'][0]['embedding']
|
| 34 |
|
|
@@ -44,59 +39,80 @@ try:
|
|
| 44 |
with open(MEMORY_FILE, "rb") as f:
|
| 45 |
memory_data = pickle.load(f)
|
| 46 |
except:
|
| 47 |
-
memory_index = faiss.IndexFlatL2(1536)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# === GLOBAL STATE ===
|
| 57 |
conversation = []
|
| 58 |
turn_count = 0
|
| 59 |
auto_mode = False
|
|
|
|
| 60 |
|
| 61 |
-
# === CHAT COMPLETION
|
| 62 |
def chat_completion(system, messages, model=CHAT_MODEL):
|
| 63 |
try:
|
| 64 |
-
# Build message list with system prompt
|
| 65 |
full_messages = [{"role": "system", "content": system}]
|
| 66 |
full_messages.extend(messages)
|
| 67 |
|
| 68 |
-
# Try v1.x API first
|
| 69 |
try:
|
| 70 |
response = openai.chat.completions.create(
|
| 71 |
model=model,
|
| 72 |
messages=full_messages,
|
| 73 |
-
temperature=0.
|
| 74 |
-
max_tokens=
|
| 75 |
)
|
| 76 |
return response.choices[0].message.content.strip()
|
| 77 |
except AttributeError:
|
| 78 |
-
# Fallback to v0.x API
|
| 79 |
response = openai.ChatCompletion.create(
|
| 80 |
model=model,
|
| 81 |
messages=full_messages,
|
| 82 |
-
temperature=0.
|
| 83 |
-
max_tokens=
|
| 84 |
)
|
| 85 |
return response['choices'][0]['message']['content'].strip()
|
| 86 |
-
|
| 87 |
except Exception as e:
|
| 88 |
return f"[API Error: {str(e)}]"
|
| 89 |
|
| 90 |
# === MEMORY MANAGEMENT ===
|
| 91 |
-
def embed_and_store(text):
|
| 92 |
try:
|
| 93 |
vec = get_embedding(text)
|
| 94 |
memory_index.add(np.array([vec], dtype='float32'))
|
| 95 |
memory_data.append({
|
| 96 |
"text": text,
|
| 97 |
-
"timestamp": datetime.now().isoformat()
|
|
|
|
| 98 |
})
|
| 99 |
-
# Periodic save to avoid constant I/O
|
| 100 |
if len(memory_data) % 5 == 0:
|
| 101 |
with open(MEMORY_FILE, "wb") as f:
|
| 102 |
pickle.dump(memory_data, f)
|
|
@@ -104,72 +120,130 @@ def embed_and_store(text):
|
|
| 104 |
except Exception as e:
|
| 105 |
print(f"Memory Error: {str(e)}")
|
| 106 |
|
| 107 |
-
# === CONVERSATION
|
| 108 |
def format_convo():
|
| 109 |
return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation])
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def detect_repetition():
|
| 112 |
-
"""Check if recent messages are similar
|
| 113 |
if len(conversation) < 4:
|
| 114 |
return False
|
| 115 |
|
| 116 |
-
# Get embeddings of last 2 pairs
|
| 117 |
recent = [m['text'] for m in conversation[-4:]]
|
| 118 |
embeddings = [get_embedding(text) for text in recent]
|
| 119 |
-
|
| 120 |
-
# Compare current with 2 messages back
|
| 121 |
similarity = cosine_similarity(embeddings[-1], embeddings[-3])
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
# === CORE CONVERSATION FLOW ===
|
| 126 |
-
def step():
|
| 127 |
-
global conversation, turn_count
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
#
|
| 137 |
last_msg = conversation[-1]['text']
|
| 138 |
b_msg = chat_completion(
|
| 139 |
AGENT_B_PROMPT,
|
| 140 |
-
[{"role": "user", "content": last_msg}]
|
| 141 |
)
|
| 142 |
-
conversation.append({"agent": "
|
| 143 |
-
embed_and_store(b_msg)
|
| 144 |
|
| 145 |
-
#
|
| 146 |
a_msg = chat_completion(
|
| 147 |
AGENT_A_PROMPT,
|
| 148 |
-
[{"role": "user", "content": b_msg}]
|
| 149 |
)
|
| 150 |
-
conversation.append({"agent": "
|
| 151 |
-
embed_and_store(a_msg)
|
| 152 |
|
| 153 |
-
# Overseer intervention
|
| 154 |
-
intervention =
|
| 155 |
-
if turn_count % 3 == 0 or detect_repetition():
|
| 156 |
context = "\n".join([m['text'] for m in conversation[-4:]])
|
| 157 |
-
prompt = f"
|
| 158 |
intervention = chat_completion(OVERSEER_PROMPT, [{"role": "user", "content": prompt}])
|
| 159 |
-
conversation.append({"agent": "
|
| 160 |
-
embed_and_store(intervention)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
turn_count += 1
|
| 163 |
-
return format_convo(), intervention
|
| 164 |
|
| 165 |
# === OVERSEER QUERY HANDLER ===
|
| 166 |
def overseer_respond(query):
|
| 167 |
try:
|
| 168 |
-
# Add context from recent conversation
|
| 169 |
context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
|
| 170 |
-
messages = [
|
| 171 |
-
{"role": "user", "content": f"Recent conversation:\n{context}\n\nQuery: {query}"}
|
| 172 |
-
]
|
| 173 |
return chat_completion(OVERSEER_PROMPT, messages)
|
| 174 |
except Exception as e:
|
| 175 |
return f"[Overseer Error: {str(e)}]"
|
|
@@ -179,7 +253,7 @@ def auto_loop():
|
|
| 179 |
global auto_mode
|
| 180 |
while auto_mode:
|
| 181 |
step()
|
| 182 |
-
time.sleep(
|
| 183 |
|
| 184 |
def toggle_auto():
|
| 185 |
global auto_mode
|
|
@@ -189,33 +263,62 @@ def toggle_auto():
|
|
| 189 |
return "π΄ Auto: OFF" if not auto_mode else "π’ Auto: ON"
|
| 190 |
|
| 191 |
# === GRADIO UI ===
|
| 192 |
-
with gr.Blocks() as demo:
|
| 193 |
-
gr.Markdown("#
|
| 194 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
with gr.Row():
|
| 197 |
-
convo_display = gr.Markdown(value="**
|
| 198 |
|
| 199 |
with gr.Row():
|
| 200 |
-
step_btn = gr.Button("βΆοΈ Next
|
| 201 |
auto_btn = gr.Button("π΄ Auto: OFF", variant="secondary")
|
| 202 |
-
clear_btn = gr.Button("π
|
|
|
|
| 203 |
|
| 204 |
-
with gr.
|
| 205 |
-
gr.
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
# Event handlers
|
| 210 |
def clear_convo():
|
| 211 |
-
global conversation, turn_count
|
| 212 |
conversation = []
|
| 213 |
turn_count = 0
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
step_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
qbox.submit(overseer_respond, inputs=qbox, outputs=overseer_out)
|
| 218 |
auto_btn.click(toggle_auto, outputs=auto_btn)
|
| 219 |
-
clear_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py - Advanced Discussion Simulator with Quad-Agent System
|
| 2 |
import gradio as gr
|
| 3 |
import openai
|
| 4 |
import threading
|
|
|
|
| 8 |
import os
|
| 9 |
import pickle
|
| 10 |
from datetime import datetime
|
| 11 |
+
import re
|
| 12 |
|
| 13 |
# === CONFIG ===
|
| 14 |
EMBEDDING_MODEL = "text-embedding-3-small"
|
| 15 |
+
CHAT_MODEL = "gpt-4o"
|
| 16 |
MEMORY_FILE = "memory.pkl"
|
| 17 |
INDEX_FILE = "memory.index"
|
|
|
|
|
|
|
| 18 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
| 19 |
|
| 20 |
# === EMBEDDING UTILS ===
|
| 21 |
def get_embedding(text, model=EMBEDDING_MODEL):
|
| 22 |
text = text.replace("\n", " ")
|
|
|
|
|
|
|
| 23 |
try:
|
|
|
|
| 24 |
response = openai.embeddings.create(input=[text], model=model)
|
| 25 |
return response.data[0].embedding
|
| 26 |
except AttributeError:
|
|
|
|
| 27 |
response = openai.Embedding.create(input=[text], model=model)
|
| 28 |
return response['data'][0]['embedding']
|
| 29 |
|
|
|
|
| 39 |
with open(MEMORY_FILE, "rb") as f:
|
| 40 |
memory_data = pickle.load(f)
|
| 41 |
except:
|
| 42 |
+
memory_index = faiss.IndexFlatL2(1536)
|
| 43 |
+
|
| 44 |
+
# === AGENT SYSTEM PROMPTS ===
|
| 45 |
+
AGENT_A_PROMPT = """You are the Discussion Initiator. Your role:
|
| 46 |
+
1. Introduce complex topics requiring multidisciplinary perspectives
|
| 47 |
+
2. Frame debates with nuanced questions exploring tensions between values
|
| 48 |
+
3. Challenge assumptions while maintaining intellectual humility
|
| 49 |
+
4. Connect concepts across domains (science, ethics, policy, technology)
|
| 50 |
+
5. Elevate discussions beyond surface-level analysis"""
|
| 51 |
+
|
| 52 |
+
AGENT_B_PROMPT = """You are the Critical Responder. Your role:
|
| 53 |
+
1. Provide counterpoints with evidence-based reasoning
|
| 54 |
+
2. Identify logical fallacies and cognitive biases in arguments
|
| 55 |
+
3. Analyze implications at different scales (individual, societal, global)
|
| 56 |
+
4. Consider second and third-order consequences
|
| 57 |
+
5. Balance idealism with practical constraints"""
|
| 58 |
|
| 59 |
+
OVERSEER_PROMPT = """You are the Depth Guardian. Your role:
|
| 60 |
+
1. Ensure discussions maintain intellectual rigor
|
| 61 |
+
2. Intervene when conversations become superficial or repetitive
|
| 62 |
+
3. Highlight unexamined assumptions and blind spots
|
| 63 |
+
4. Introduce relevant frameworks (systems thinking, ethical paradigms)
|
| 64 |
+
5. Prompt consideration of marginalized perspectives
|
| 65 |
+
6. Synthesize key tensions and paradoxes"""
|
| 66 |
+
|
| 67 |
+
OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role:
|
| 68 |
+
1. Introduce radical perspectives from unrelated fields
|
| 69 |
+
2. Challenge conventional wisdom with contrarian viewpoints
|
| 70 |
+
3. Surface historical precedents and analogies
|
| 71 |
+
4. Propose unconventional solutions to complex problems
|
| 72 |
+
5. Highlight overlooked connections and systemic relationships
|
| 73 |
+
6. Question the framing of the discussion itself"""
|
| 74 |
|
| 75 |
# === GLOBAL STATE ===
|
| 76 |
conversation = []
|
| 77 |
turn_count = 0
|
| 78 |
auto_mode = False
|
| 79 |
+
current_topic = ""
|
| 80 |
|
| 81 |
+
# === CHAT COMPLETION ===
|
| 82 |
def chat_completion(system, messages, model=CHAT_MODEL):
|
| 83 |
try:
|
|
|
|
| 84 |
full_messages = [{"role": "system", "content": system}]
|
| 85 |
full_messages.extend(messages)
|
| 86 |
|
|
|
|
| 87 |
try:
|
| 88 |
response = openai.chat.completions.create(
|
| 89 |
model=model,
|
| 90 |
messages=full_messages,
|
| 91 |
+
temperature=0.75,
|
| 92 |
+
max_tokens=300
|
| 93 |
)
|
| 94 |
return response.choices[0].message.content.strip()
|
| 95 |
except AttributeError:
|
|
|
|
| 96 |
response = openai.ChatCompletion.create(
|
| 97 |
model=model,
|
| 98 |
messages=full_messages,
|
| 99 |
+
temperature=0.75,
|
| 100 |
+
max_tokens=300
|
| 101 |
)
|
| 102 |
return response['choices'][0]['message']['content'].strip()
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
return f"[API Error: {str(e)}]"
|
| 105 |
|
| 106 |
# === MEMORY MANAGEMENT ===
|
| 107 |
+
def embed_and_store(text, agent=None):
|
| 108 |
try:
|
| 109 |
vec = get_embedding(text)
|
| 110 |
memory_index.add(np.array([vec], dtype='float32'))
|
| 111 |
memory_data.append({
|
| 112 |
"text": text,
|
| 113 |
+
"timestamp": datetime.now().isoformat(),
|
| 114 |
+
"agent": agent or "system"
|
| 115 |
})
|
|
|
|
| 116 |
if len(memory_data) % 5 == 0:
|
| 117 |
with open(MEMORY_FILE, "wb") as f:
|
| 118 |
pickle.dump(memory_data, f)
|
|
|
|
| 120 |
except Exception as e:
|
| 121 |
print(f"Memory Error: {str(e)}")
|
| 122 |
|
| 123 |
+
# === CONVERSATION UTILITIES ===
|
| 124 |
def format_convo():
|
| 125 |
return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation])
|
| 126 |
|
| 127 |
+
def detect_superficiality():
|
| 128 |
+
"""Detect shallow arguments using linguistic analysis"""
|
| 129 |
+
if len(conversation) < 3:
|
| 130 |
+
return False
|
| 131 |
+
|
| 132 |
+
last_texts = [m['text'] for m in conversation[-3:]]
|
| 133 |
+
|
| 134 |
+
# Linguistic markers of superficiality
|
| 135 |
+
superficial_indicators = [
|
| 136 |
+
r"\b(obviously|clearly|everyone knows)\b",
|
| 137 |
+
r"\b(simply|just|merely)\b",
|
| 138 |
+
r"\b(always|never)\b",
|
| 139 |
+
r"\b(I (think|believe|feel))\b",
|
| 140 |
+
r"\b(without question|undeniably)\b"
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Argument depth markers
|
| 144 |
+
depth_markers = [
|
| 145 |
+
r"\b(however|conversely|paradoxically)\b",
|
| 146 |
+
r"\b(evidence suggests|studies indicate)\b",
|
| 147 |
+
r"\b(complex interplay|multifaceted nature)\b",
|
| 148 |
+
r"\b(trade-off|tension between)\b",
|
| 149 |
+
r"\b(historical precedent|comparative analysis)\b"
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
superficial_count = 0
|
| 153 |
+
depth_count = 0
|
| 154 |
+
|
| 155 |
+
for text in last_texts:
|
| 156 |
+
for pattern in superficial_indicators:
|
| 157 |
+
if re.search(pattern, text, re.IGNORECASE):
|
| 158 |
+
superficial_count += 1
|
| 159 |
+
for pattern in depth_markers:
|
| 160 |
+
if re.search(pattern, text, re.IGNORECASE):
|
| 161 |
+
depth_count += 1
|
| 162 |
+
|
| 163 |
+
return superficial_count > depth_count * 2
|
| 164 |
+
|
| 165 |
def detect_repetition():
|
| 166 |
+
"""Check if recent messages are conceptually similar"""
|
| 167 |
if len(conversation) < 4:
|
| 168 |
return False
|
| 169 |
|
|
|
|
| 170 |
recent = [m['text'] for m in conversation[-4:]]
|
| 171 |
embeddings = [get_embedding(text) for text in recent]
|
|
|
|
|
|
|
| 172 |
similarity = cosine_similarity(embeddings[-1], embeddings[-3])
|
| 173 |
+
return similarity > 0.82
|
| 174 |
+
|
| 175 |
+
# === AGENT FUNCTIONS ===
|
| 176 |
+
def generate_topic():
|
| 177 |
+
"""Generate a complex discussion topic"""
|
| 178 |
+
topic = chat_completion(
|
| 179 |
+
"Generate a complex discussion topic requiring multidisciplinary analysis",
|
| 180 |
+
[{"role": "user", "content": "Create a topic addressing tensions between technological progress and human values"}]
|
| 181 |
+
)
|
| 182 |
+
return topic.split(":")[-1].strip() if ":" in topic else topic
|
| 183 |
+
|
| 184 |
+
def outsider_comment():
|
| 185 |
+
"""Generate outsider perspective"""
|
| 186 |
+
context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]])
|
| 187 |
+
prompt = f"Conversation Context:\n{context}\n\nProvide your cross-disciplinary perspective:"
|
| 188 |
+
return chat_completion(OUTSIDER_PROMPT, [{"role": "user", "content": prompt}])
|
| 189 |
|
| 190 |
# === CORE CONVERSATION FLOW ===
|
| 191 |
+
def step(topic_input=""):
|
| 192 |
+
global conversation, turn_count, current_topic
|
| 193 |
|
| 194 |
+
# Initialize new discussion
|
| 195 |
+
if not conversation:
|
| 196 |
+
current_topic = topic_input or generate_topic()
|
| 197 |
+
msg = chat_completion(
|
| 198 |
+
AGENT_A_PROMPT,
|
| 199 |
+
[{"role": "user", "content": f"Initiate a deep discussion on: {current_topic}"}]
|
| 200 |
+
)
|
| 201 |
+
conversation.append({"agent": "π‘ Initiator", "text": msg})
|
| 202 |
+
embed_and_store(msg, "Initiator")
|
| 203 |
+
turn_count = 1
|
| 204 |
+
return format_convo(), "", "", current_topic
|
| 205 |
|
| 206 |
+
# Critical Responder engages
|
| 207 |
last_msg = conversation[-1]['text']
|
| 208 |
b_msg = chat_completion(
|
| 209 |
AGENT_B_PROMPT,
|
| 210 |
+
[{"role": "user", "content": f"Topic: {current_topic}\n\nLast statement: {last_msg}"}]
|
| 211 |
)
|
| 212 |
+
conversation.append({"agent": "π Responder", "text": b_msg})
|
| 213 |
+
embed_and_store(b_msg, "Responder")
|
| 214 |
|
| 215 |
+
# Initiator counters
|
| 216 |
a_msg = chat_completion(
|
| 217 |
AGENT_A_PROMPT,
|
| 218 |
+
[{"role": "user", "content": f"Topic: {current_topic}\n\nCritical response: {b_msg}"}]
|
| 219 |
)
|
| 220 |
+
conversation.append({"agent": "π‘ Initiator", "text": a_msg})
|
| 221 |
+
embed_and_store(a_msg, "Initiator")
|
| 222 |
|
| 223 |
+
# Overseer intervention
|
| 224 |
+
intervention = ""
|
| 225 |
+
if turn_count % 3 == 0 or detect_repetition() or detect_superficiality():
|
| 226 |
context = "\n".join([m['text'] for m in conversation[-4:]])
|
| 227 |
+
prompt = f"Topic: {current_topic}\n\nDiscussion Context:\n{context}\n\nDeepen the analysis:"
|
| 228 |
intervention = chat_completion(OVERSEER_PROMPT, [{"role": "user", "content": prompt}])
|
| 229 |
+
conversation.append({"agent": "βοΈ Depth Guardian", "text": intervention})
|
| 230 |
+
embed_and_store(intervention, "Overseer")
|
| 231 |
+
|
| 232 |
+
# Outsider commentary
|
| 233 |
+
outsider_msg = ""
|
| 234 |
+
if turn_count % 4 == 0 or "paradox" in last_msg.lower():
|
| 235 |
+
outsider_msg = outsider_comment()
|
| 236 |
+
conversation.append({"agent": "π Provocateur", "text": outsider_msg})
|
| 237 |
+
embed_and_store(outsider_msg, "Outsider")
|
| 238 |
|
| 239 |
turn_count += 1
|
| 240 |
+
return format_convo(), intervention, outsider_msg, current_topic
|
| 241 |
|
| 242 |
# === OVERSEER QUERY HANDLER ===
|
| 243 |
def overseer_respond(query):
|
| 244 |
try:
|
|
|
|
| 245 |
context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
|
| 246 |
+
messages = [{"role": "user", "content": f"Discussion Topic: {current_topic}\n\nRecent context:\n{context}\n\nQuery: {query}"}]
|
|
|
|
|
|
|
| 247 |
return chat_completion(OVERSEER_PROMPT, messages)
|
| 248 |
except Exception as e:
|
| 249 |
return f"[Overseer Error: {str(e)}]"
|
|
|
|
| 253 |
global auto_mode
|
| 254 |
while auto_mode:
|
| 255 |
step()
|
| 256 |
+
time.sleep(6)
|
| 257 |
|
| 258 |
def toggle_auto():
|
| 259 |
global auto_mode
|
|
|
|
| 263 |
return "π΄ Auto: OFF" if not auto_mode else "π’ Auto: ON"
|
| 264 |
|
| 265 |
# === GRADIO UI ===
|
| 266 |
+
with gr.Blocks(title="Advanced Discussion Simulator") as demo:
|
| 267 |
+
gr.Markdown("# π§ Advanced Discussion Simulator")
|
| 268 |
+
gr.Markdown("### Quad-Agent System for Complex Discourse")
|
| 269 |
+
|
| 270 |
+
with gr.Row():
|
| 271 |
+
topic_display = gr.Textbox(label="Current Topic", interactive=False)
|
| 272 |
|
| 273 |
with gr.Row():
|
| 274 |
+
convo_display = gr.Markdown(value="**Discussion will appear here**")
|
| 275 |
|
| 276 |
with gr.Row():
|
| 277 |
+
step_btn = gr.Button("βΆοΈ Next Turn", variant="primary")
|
| 278 |
auto_btn = gr.Button("π΄ Auto: OFF", variant="secondary")
|
| 279 |
+
clear_btn = gr.Button("π New Discussion", variant="stop")
|
| 280 |
+
topic_btn = gr.Button("π² Random Topic", variant="secondary")
|
| 281 |
|
| 282 |
+
with gr.Row():
|
| 283 |
+
with gr.Column(scale=1):
|
| 284 |
+
gr.Markdown("### βοΈ Depth Guardian")
|
| 285 |
+
intervention_display = gr.Textbox(label="Intervention", interactive=False)
|
| 286 |
+
with gr.Column(scale=1):
|
| 287 |
+
gr.Markdown("### π Cross-Disciplinary View")
|
| 288 |
+
outsider_display = gr.Textbox(label="Provocation", interactive=False)
|
| 289 |
+
|
| 290 |
+
with gr.Accordion("π¬ Guide the Discussion", open=False):
|
| 291 |
+
topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of generative AI in creative industries...")
|
| 292 |
+
qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing in this discussion?")
|
| 293 |
+
overseer_out = gr.Textbox(label="Response", interactive=False)
|
| 294 |
|
| 295 |
# Event handlers
|
| 296 |
def clear_convo():
|
| 297 |
+
global conversation, turn_count, current_topic
|
| 298 |
conversation = []
|
| 299 |
turn_count = 0
|
| 300 |
+
current_topic = ""
|
| 301 |
+
return "**New discussion started**", "", "", "", ""
|
| 302 |
+
|
| 303 |
+
def new_topic():
|
| 304 |
+
clear_convo()
|
| 305 |
+
topic = generate_topic()
|
| 306 |
+
return "", "", "", topic, topic
|
| 307 |
|
| 308 |
+
step_btn.click(
|
| 309 |
+
step,
|
| 310 |
+
inputs=[topic_input],
|
| 311 |
+
outputs=[convo_display, intervention_display, outsider_display, topic_display]
|
| 312 |
+
)
|
| 313 |
qbox.submit(overseer_respond, inputs=qbox, outputs=overseer_out)
|
| 314 |
auto_btn.click(toggle_auto, outputs=auto_btn)
|
| 315 |
+
clear_btn.click(
|
| 316 |
+
clear_convo,
|
| 317 |
+
outputs=[convo_display, intervention_display, outsider_display, topic_display, overseer_out]
|
| 318 |
+
)
|
| 319 |
+
topic_btn.click(
|
| 320 |
+
new_topic,
|
| 321 |
+
outputs=[convo_display, intervention_display, outsider_display, topic_display, overseer_out]
|
| 322 |
+
)
|
| 323 |
|
| 324 |
demo.launch()
|