Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py
|
2 |
import gradio as gr
|
3 |
import openai
|
4 |
import threading
|
@@ -8,27 +8,22 @@ import faiss
|
|
8 |
import os
|
9 |
import pickle
|
10 |
from datetime import datetime
|
|
|
11 |
|
12 |
# === CONFIG ===
|
13 |
EMBEDDING_MODEL = "text-embedding-3-small"
|
14 |
-
CHAT_MODEL = "gpt-4o"
|
15 |
MEMORY_FILE = "memory.pkl"
|
16 |
INDEX_FILE = "memory.index"
|
17 |
-
|
18 |
-
# Initialize OpenAI API
|
19 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
20 |
|
21 |
# === EMBEDDING UTILS ===
|
22 |
def get_embedding(text, model=EMBEDDING_MODEL):
|
23 |
text = text.replace("\n", " ")
|
24 |
-
|
25 |
-
# Compatible API call for both v0.x and v1.x
|
26 |
try:
|
27 |
-
# Try v1.x API first
|
28 |
response = openai.embeddings.create(input=[text], model=model)
|
29 |
return response.data[0].embedding
|
30 |
except AttributeError:
|
31 |
-
# Fallback to v0.x API
|
32 |
response = openai.Embedding.create(input=[text], model=model)
|
33 |
return response['data'][0]['embedding']
|
34 |
|
@@ -44,59 +39,80 @@ try:
|
|
44 |
with open(MEMORY_FILE, "rb") as f:
|
45 |
memory_data = pickle.load(f)
|
46 |
except:
|
47 |
-
memory_index = faiss.IndexFlatL2(1536)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# === GLOBAL STATE ===
|
57 |
conversation = []
|
58 |
turn_count = 0
|
59 |
auto_mode = False
|
|
|
60 |
|
61 |
-
# === CHAT COMPLETION
|
62 |
def chat_completion(system, messages, model=CHAT_MODEL):
|
63 |
try:
|
64 |
-
# Build message list with system prompt
|
65 |
full_messages = [{"role": "system", "content": system}]
|
66 |
full_messages.extend(messages)
|
67 |
|
68 |
-
# Try v1.x API first
|
69 |
try:
|
70 |
response = openai.chat.completions.create(
|
71 |
model=model,
|
72 |
messages=full_messages,
|
73 |
-
temperature=0.
|
74 |
-
max_tokens=
|
75 |
)
|
76 |
return response.choices[0].message.content.strip()
|
77 |
except AttributeError:
|
78 |
-
# Fallback to v0.x API
|
79 |
response = openai.ChatCompletion.create(
|
80 |
model=model,
|
81 |
messages=full_messages,
|
82 |
-
temperature=0.
|
83 |
-
max_tokens=
|
84 |
)
|
85 |
return response['choices'][0]['message']['content'].strip()
|
86 |
-
|
87 |
except Exception as e:
|
88 |
return f"[API Error: {str(e)}]"
|
89 |
|
90 |
# === MEMORY MANAGEMENT ===
|
91 |
-
def embed_and_store(text):
|
92 |
try:
|
93 |
vec = get_embedding(text)
|
94 |
memory_index.add(np.array([vec], dtype='float32'))
|
95 |
memory_data.append({
|
96 |
"text": text,
|
97 |
-
"timestamp": datetime.now().isoformat()
|
|
|
98 |
})
|
99 |
-
# Periodic save to avoid constant I/O
|
100 |
if len(memory_data) % 5 == 0:
|
101 |
with open(MEMORY_FILE, "wb") as f:
|
102 |
pickle.dump(memory_data, f)
|
@@ -104,72 +120,130 @@ def embed_and_store(text):
|
|
104 |
except Exception as e:
|
105 |
print(f"Memory Error: {str(e)}")
|
106 |
|
107 |
-
# === CONVERSATION
|
108 |
def format_convo():
|
109 |
return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation])
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def detect_repetition():
|
112 |
-
"""Check if recent messages are similar
|
113 |
if len(conversation) < 4:
|
114 |
return False
|
115 |
|
116 |
-
# Get embeddings of last 2 pairs
|
117 |
recent = [m['text'] for m in conversation[-4:]]
|
118 |
embeddings = [get_embedding(text) for text in recent]
|
119 |
-
|
120 |
-
# Compare current with 2 messages back
|
121 |
similarity = cosine_similarity(embeddings[-1], embeddings[-3])
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
# === CORE CONVERSATION FLOW ===
|
126 |
-
def step():
|
127 |
-
global conversation, turn_count
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
#
|
137 |
last_msg = conversation[-1]['text']
|
138 |
b_msg = chat_completion(
|
139 |
AGENT_B_PROMPT,
|
140 |
-
[{"role": "user", "content": last_msg}]
|
141 |
)
|
142 |
-
conversation.append({"agent": "
|
143 |
-
embed_and_store(b_msg)
|
144 |
|
145 |
-
#
|
146 |
a_msg = chat_completion(
|
147 |
AGENT_A_PROMPT,
|
148 |
-
[{"role": "user", "content": b_msg}]
|
149 |
)
|
150 |
-
conversation.append({"agent": "
|
151 |
-
embed_and_store(a_msg)
|
152 |
|
153 |
-
# Overseer intervention
|
154 |
-
intervention =
|
155 |
-
if turn_count % 3 == 0 or detect_repetition():
|
156 |
context = "\n".join([m['text'] for m in conversation[-4:]])
|
157 |
-
prompt = f"
|
158 |
intervention = chat_completion(OVERSEER_PROMPT, [{"role": "user", "content": prompt}])
|
159 |
-
conversation.append({"agent": "
|
160 |
-
embed_and_store(intervention)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
turn_count += 1
|
163 |
-
return format_convo(), intervention
|
164 |
|
165 |
# === OVERSEER QUERY HANDLER ===
|
166 |
def overseer_respond(query):
|
167 |
try:
|
168 |
-
# Add context from recent conversation
|
169 |
context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
|
170 |
-
messages = [
|
171 |
-
{"role": "user", "content": f"Recent conversation:\n{context}\n\nQuery: {query}"}
|
172 |
-
]
|
173 |
return chat_completion(OVERSEER_PROMPT, messages)
|
174 |
except Exception as e:
|
175 |
return f"[Overseer Error: {str(e)}]"
|
@@ -179,7 +253,7 @@ def auto_loop():
|
|
179 |
global auto_mode
|
180 |
while auto_mode:
|
181 |
step()
|
182 |
-
time.sleep(
|
183 |
|
184 |
def toggle_auto():
|
185 |
global auto_mode
|
@@ -189,33 +263,62 @@ def toggle_auto():
|
|
189 |
return "π΄ Auto: OFF" if not auto_mode else "π’ Auto: ON"
|
190 |
|
191 |
# === GRADIO UI ===
|
192 |
-
with gr.Blocks() as demo:
|
193 |
-
gr.Markdown("#
|
194 |
-
gr.Markdown("
|
|
|
|
|
|
|
195 |
|
196 |
with gr.Row():
|
197 |
-
convo_display = gr.Markdown(value="**
|
198 |
|
199 |
with gr.Row():
|
200 |
-
step_btn = gr.Button("βΆοΈ Next
|
201 |
auto_btn = gr.Button("π΄ Auto: OFF", variant="secondary")
|
202 |
-
clear_btn = gr.Button("π
|
|
|
203 |
|
204 |
-
with gr.
|
205 |
-
gr.
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
# Event handlers
|
210 |
def clear_convo():
|
211 |
-
global conversation, turn_count
|
212 |
conversation = []
|
213 |
turn_count = 0
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
step_btn.click(
|
|
|
|
|
|
|
|
|
217 |
qbox.submit(overseer_respond, inputs=qbox, outputs=overseer_out)
|
218 |
auto_btn.click(toggle_auto, outputs=auto_btn)
|
219 |
-
clear_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
demo.launch()
|
|
|
1 |
+
# app.py - Advanced Discussion Simulator with Quad-Agent System
|
2 |
import gradio as gr
|
3 |
import openai
|
4 |
import threading
|
|
|
8 |
import os
|
9 |
import pickle
|
10 |
from datetime import datetime
|
11 |
+
import re
|
12 |
|
13 |
# === CONFIG ===
|
14 |
EMBEDDING_MODEL = "text-embedding-3-small"
|
15 |
+
CHAT_MODEL = "gpt-4o"
|
16 |
MEMORY_FILE = "memory.pkl"
|
17 |
INDEX_FILE = "memory.index"
|
|
|
|
|
18 |
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
19 |
|
20 |
# === EMBEDDING UTILS ===
|
21 |
def get_embedding(text, model=EMBEDDING_MODEL):
|
22 |
text = text.replace("\n", " ")
|
|
|
|
|
23 |
try:
|
|
|
24 |
response = openai.embeddings.create(input=[text], model=model)
|
25 |
return response.data[0].embedding
|
26 |
except AttributeError:
|
|
|
27 |
response = openai.Embedding.create(input=[text], model=model)
|
28 |
return response['data'][0]['embedding']
|
29 |
|
|
|
39 |
with open(MEMORY_FILE, "rb") as f:
|
40 |
memory_data = pickle.load(f)
|
41 |
except:
|
42 |
+
memory_index = faiss.IndexFlatL2(1536)
|
43 |
+
|
44 |
+
# === AGENT SYSTEM PROMPTS ===
|
45 |
+
AGENT_A_PROMPT = """You are the Discussion Initiator. Your role:
|
46 |
+
1. Introduce complex topics requiring multidisciplinary perspectives
|
47 |
+
2. Frame debates with nuanced questions exploring tensions between values
|
48 |
+
3. Challenge assumptions while maintaining intellectual humility
|
49 |
+
4. Connect concepts across domains (science, ethics, policy, technology)
|
50 |
+
5. Elevate discussions beyond surface-level analysis"""
|
51 |
+
|
52 |
+
AGENT_B_PROMPT = """You are the Critical Responder. Your role:
|
53 |
+
1. Provide counterpoints with evidence-based reasoning
|
54 |
+
2. Identify logical fallacies and cognitive biases in arguments
|
55 |
+
3. Analyze implications at different scales (individual, societal, global)
|
56 |
+
4. Consider second and third-order consequences
|
57 |
+
5. Balance idealism with practical constraints"""
|
58 |
|
59 |
+
OVERSEER_PROMPT = """You are the Depth Guardian. Your role:
|
60 |
+
1. Ensure discussions maintain intellectual rigor
|
61 |
+
2. Intervene when conversations become superficial or repetitive
|
62 |
+
3. Highlight unexamined assumptions and blind spots
|
63 |
+
4. Introduce relevant frameworks (systems thinking, ethical paradigms)
|
64 |
+
5. Prompt consideration of marginalized perspectives
|
65 |
+
6. Synthesize key tensions and paradoxes"""
|
66 |
+
|
67 |
+
OUTSIDER_PROMPT = """You are the Cross-Disciplinary Provocateur. Your role:
|
68 |
+
1. Introduce radical perspectives from unrelated fields
|
69 |
+
2. Challenge conventional wisdom with contrarian viewpoints
|
70 |
+
3. Surface historical precedents and analogies
|
71 |
+
4. Propose unconventional solutions to complex problems
|
72 |
+
5. Highlight overlooked connections and systemic relationships
|
73 |
+
6. Question the framing of the discussion itself"""
|
74 |
|
75 |
# === GLOBAL STATE ===
|
76 |
conversation = []
|
77 |
turn_count = 0
|
78 |
auto_mode = False
|
79 |
+
current_topic = ""
|
80 |
|
81 |
+
# === CHAT COMPLETION ===
|
82 |
def chat_completion(system, messages, model=CHAT_MODEL):
|
83 |
try:
|
|
|
84 |
full_messages = [{"role": "system", "content": system}]
|
85 |
full_messages.extend(messages)
|
86 |
|
|
|
87 |
try:
|
88 |
response = openai.chat.completions.create(
|
89 |
model=model,
|
90 |
messages=full_messages,
|
91 |
+
temperature=0.75,
|
92 |
+
max_tokens=300
|
93 |
)
|
94 |
return response.choices[0].message.content.strip()
|
95 |
except AttributeError:
|
|
|
96 |
response = openai.ChatCompletion.create(
|
97 |
model=model,
|
98 |
messages=full_messages,
|
99 |
+
temperature=0.75,
|
100 |
+
max_tokens=300
|
101 |
)
|
102 |
return response['choices'][0]['message']['content'].strip()
|
|
|
103 |
except Exception as e:
|
104 |
return f"[API Error: {str(e)}]"
|
105 |
|
106 |
# === MEMORY MANAGEMENT ===
|
107 |
+
def embed_and_store(text, agent=None):
|
108 |
try:
|
109 |
vec = get_embedding(text)
|
110 |
memory_index.add(np.array([vec], dtype='float32'))
|
111 |
memory_data.append({
|
112 |
"text": text,
|
113 |
+
"timestamp": datetime.now().isoformat(),
|
114 |
+
"agent": agent or "system"
|
115 |
})
|
|
|
116 |
if len(memory_data) % 5 == 0:
|
117 |
with open(MEMORY_FILE, "wb") as f:
|
118 |
pickle.dump(memory_data, f)
|
|
|
120 |
except Exception as e:
|
121 |
print(f"Memory Error: {str(e)}")
|
122 |
|
123 |
+
# === CONVERSATION UTILITIES ===
|
124 |
def format_convo():
|
125 |
return "\n".join([f"**{m['agent']}**: {m['text']}" for m in conversation])
|
126 |
|
127 |
+
def detect_superficiality():
|
128 |
+
"""Detect shallow arguments using linguistic analysis"""
|
129 |
+
if len(conversation) < 3:
|
130 |
+
return False
|
131 |
+
|
132 |
+
last_texts = [m['text'] for m in conversation[-3:]]
|
133 |
+
|
134 |
+
# Linguistic markers of superficiality
|
135 |
+
superficial_indicators = [
|
136 |
+
r"\b(obviously|clearly|everyone knows)\b",
|
137 |
+
r"\b(simply|just|merely)\b",
|
138 |
+
r"\b(always|never)\b",
|
139 |
+
r"\b(I (think|believe|feel))\b",
|
140 |
+
r"\b(without question|undeniably)\b"
|
141 |
+
]
|
142 |
+
|
143 |
+
# Argument depth markers
|
144 |
+
depth_markers = [
|
145 |
+
r"\b(however|conversely|paradoxically)\b",
|
146 |
+
r"\b(evidence suggests|studies indicate)\b",
|
147 |
+
r"\b(complex interplay|multifaceted nature)\b",
|
148 |
+
r"\b(trade-off|tension between)\b",
|
149 |
+
r"\b(historical precedent|comparative analysis)\b"
|
150 |
+
]
|
151 |
+
|
152 |
+
superficial_count = 0
|
153 |
+
depth_count = 0
|
154 |
+
|
155 |
+
for text in last_texts:
|
156 |
+
for pattern in superficial_indicators:
|
157 |
+
if re.search(pattern, text, re.IGNORECASE):
|
158 |
+
superficial_count += 1
|
159 |
+
for pattern in depth_markers:
|
160 |
+
if re.search(pattern, text, re.IGNORECASE):
|
161 |
+
depth_count += 1
|
162 |
+
|
163 |
+
return superficial_count > depth_count * 2
|
164 |
+
|
165 |
def detect_repetition():
|
166 |
+
"""Check if recent messages are conceptually similar"""
|
167 |
if len(conversation) < 4:
|
168 |
return False
|
169 |
|
|
|
170 |
recent = [m['text'] for m in conversation[-4:]]
|
171 |
embeddings = [get_embedding(text) for text in recent]
|
|
|
|
|
172 |
similarity = cosine_similarity(embeddings[-1], embeddings[-3])
|
173 |
+
return similarity > 0.82
|
174 |
+
|
175 |
+
# === AGENT FUNCTIONS ===
|
176 |
+
def generate_topic():
|
177 |
+
"""Generate a complex discussion topic"""
|
178 |
+
topic = chat_completion(
|
179 |
+
"Generate a complex discussion topic requiring multidisciplinary analysis",
|
180 |
+
[{"role": "user", "content": "Create a topic addressing tensions between technological progress and human values"}]
|
181 |
+
)
|
182 |
+
return topic.split(":")[-1].strip() if ":" in topic else topic
|
183 |
+
|
184 |
+
def outsider_comment():
|
185 |
+
"""Generate outsider perspective"""
|
186 |
+
context = "\n".join([f"{m['agent']}: {m['text']}" for m in conversation[-4:]])
|
187 |
+
prompt = f"Conversation Context:\n{context}\n\nProvide your cross-disciplinary perspective:"
|
188 |
+
return chat_completion(OUTSIDER_PROMPT, [{"role": "user", "content": prompt}])
|
189 |
|
190 |
# === CORE CONVERSATION FLOW ===
|
191 |
+
def step(topic_input=""):
|
192 |
+
global conversation, turn_count, current_topic
|
193 |
|
194 |
+
# Initialize new discussion
|
195 |
+
if not conversation:
|
196 |
+
current_topic = topic_input or generate_topic()
|
197 |
+
msg = chat_completion(
|
198 |
+
AGENT_A_PROMPT,
|
199 |
+
[{"role": "user", "content": f"Initiate a deep discussion on: {current_topic}"}]
|
200 |
+
)
|
201 |
+
conversation.append({"agent": "π‘ Initiator", "text": msg})
|
202 |
+
embed_and_store(msg, "Initiator")
|
203 |
+
turn_count = 1
|
204 |
+
return format_convo(), "", "", current_topic
|
205 |
|
206 |
+
# Critical Responder engages
|
207 |
last_msg = conversation[-1]['text']
|
208 |
b_msg = chat_completion(
|
209 |
AGENT_B_PROMPT,
|
210 |
+
[{"role": "user", "content": f"Topic: {current_topic}\n\nLast statement: {last_msg}"}]
|
211 |
)
|
212 |
+
conversation.append({"agent": "π Responder", "text": b_msg})
|
213 |
+
embed_and_store(b_msg, "Responder")
|
214 |
|
215 |
+
# Initiator counters
|
216 |
a_msg = chat_completion(
|
217 |
AGENT_A_PROMPT,
|
218 |
+
[{"role": "user", "content": f"Topic: {current_topic}\n\nCritical response: {b_msg}"}]
|
219 |
)
|
220 |
+
conversation.append({"agent": "π‘ Initiator", "text": a_msg})
|
221 |
+
embed_and_store(a_msg, "Initiator")
|
222 |
|
223 |
+
# Overseer intervention
|
224 |
+
intervention = ""
|
225 |
+
if turn_count % 3 == 0 or detect_repetition() or detect_superficiality():
|
226 |
context = "\n".join([m['text'] for m in conversation[-4:]])
|
227 |
+
prompt = f"Topic: {current_topic}\n\nDiscussion Context:\n{context}\n\nDeepen the analysis:"
|
228 |
intervention = chat_completion(OVERSEER_PROMPT, [{"role": "user", "content": prompt}])
|
229 |
+
conversation.append({"agent": "βοΈ Depth Guardian", "text": intervention})
|
230 |
+
embed_and_store(intervention, "Overseer")
|
231 |
+
|
232 |
+
# Outsider commentary
|
233 |
+
outsider_msg = ""
|
234 |
+
if turn_count % 4 == 0 or "paradox" in last_msg.lower():
|
235 |
+
outsider_msg = outsider_comment()
|
236 |
+
conversation.append({"agent": "π Provocateur", "text": outsider_msg})
|
237 |
+
embed_and_store(outsider_msg, "Outsider")
|
238 |
|
239 |
turn_count += 1
|
240 |
+
return format_convo(), intervention, outsider_msg, current_topic
|
241 |
|
242 |
# === OVERSEER QUERY HANDLER ===
|
243 |
def overseer_respond(query):
|
244 |
try:
|
|
|
245 |
context = "\n".join([m['text'] for m in conversation[-3:]]) if conversation else "No context"
|
246 |
+
messages = [{"role": "user", "content": f"Discussion Topic: {current_topic}\n\nRecent context:\n{context}\n\nQuery: {query}"}]
|
|
|
|
|
247 |
return chat_completion(OVERSEER_PROMPT, messages)
|
248 |
except Exception as e:
|
249 |
return f"[Overseer Error: {str(e)}]"
|
|
|
253 |
global auto_mode
|
254 |
while auto_mode:
|
255 |
step()
|
256 |
+
time.sleep(6)
|
257 |
|
258 |
def toggle_auto():
|
259 |
global auto_mode
|
|
|
263 |
return "π΄ Auto: OFF" if not auto_mode else "π’ Auto: ON"
|
264 |
|
265 |
# === GRADIO UI ===
|
266 |
+
with gr.Blocks(title="Advanced Discussion Simulator") as demo:
|
267 |
+
gr.Markdown("# π§ Advanced Discussion Simulator")
|
268 |
+
gr.Markdown("### Quad-Agent System for Complex Discourse")
|
269 |
+
|
270 |
+
with gr.Row():
|
271 |
+
topic_display = gr.Textbox(label="Current Topic", interactive=False)
|
272 |
|
273 |
with gr.Row():
|
274 |
+
convo_display = gr.Markdown(value="**Discussion will appear here**")
|
275 |
|
276 |
with gr.Row():
|
277 |
+
step_btn = gr.Button("βΆοΈ Next Turn", variant="primary")
|
278 |
auto_btn = gr.Button("π΄ Auto: OFF", variant="secondary")
|
279 |
+
clear_btn = gr.Button("π New Discussion", variant="stop")
|
280 |
+
topic_btn = gr.Button("π² Random Topic", variant="secondary")
|
281 |
|
282 |
+
with gr.Row():
|
283 |
+
with gr.Column(scale=1):
|
284 |
+
gr.Markdown("### βοΈ Depth Guardian")
|
285 |
+
intervention_display = gr.Textbox(label="Intervention", interactive=False)
|
286 |
+
with gr.Column(scale=1):
|
287 |
+
gr.Markdown("### π Cross-Disciplinary View")
|
288 |
+
outsider_display = gr.Textbox(label="Provocation", interactive=False)
|
289 |
+
|
290 |
+
with gr.Accordion("π¬ Guide the Discussion", open=False):
|
291 |
+
topic_input = gr.Textbox(label="Set Custom Topic", placeholder="e.g., Ethics of generative AI in creative industries...")
|
292 |
+
qbox = gr.Textbox(label="Ask the Depth Guardian", placeholder="What perspectives are missing in this discussion?")
|
293 |
+
overseer_out = gr.Textbox(label="Response", interactive=False)
|
294 |
|
295 |
# Event handlers
|
296 |
def clear_convo():
|
297 |
+
global conversation, turn_count, current_topic
|
298 |
conversation = []
|
299 |
turn_count = 0
|
300 |
+
current_topic = ""
|
301 |
+
return "**New discussion started**", "", "", "", ""
|
302 |
+
|
303 |
+
def new_topic():
|
304 |
+
clear_convo()
|
305 |
+
topic = generate_topic()
|
306 |
+
return "", "", "", topic, topic
|
307 |
|
308 |
+
step_btn.click(
|
309 |
+
step,
|
310 |
+
inputs=[topic_input],
|
311 |
+
outputs=[convo_display, intervention_display, outsider_display, topic_display]
|
312 |
+
)
|
313 |
qbox.submit(overseer_respond, inputs=qbox, outputs=overseer_out)
|
314 |
auto_btn.click(toggle_auto, outputs=auto_btn)
|
315 |
+
clear_btn.click(
|
316 |
+
clear_convo,
|
317 |
+
outputs=[convo_display, intervention_display, outsider_display, topic_display, overseer_out]
|
318 |
+
)
|
319 |
+
topic_btn.click(
|
320 |
+
new_topic,
|
321 |
+
outputs=[convo_display, intervention_display, outsider_display, topic_display, overseer_out]
|
322 |
+
)
|
323 |
|
324 |
demo.launch()
|