LearningnRunning commited on
Commit
45f24a2
·
1 Parent(s): 1f840b7

FEAT Fastapi

Browse files
Files changed (4) hide show
  1. app.py +16 -126
  2. gradio_app.py +126 -0
  3. utils/api.py +82 -0
  4. utils/gunicorn_config.py +3 -0
app.py CHANGED
@@ -1,126 +1,16 @@
1
- import gradio as gr
2
- import cv2
3
- import numpy as np
4
- from PIL import Image
5
- import requests
6
- from io import BytesIO
7
- import torch
8
- import sys
9
- from pathlib import Path
10
- import os
11
- FILE = Path(__file__).resolve()
12
- ROOT = FILE.parents[0] # YOLOv5 root directory
13
- if str(ROOT) not in sys.path:
14
- sys.path.append(str(ROOT)) # add ROOT to PATH
15
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
16
-
17
- from models.common import DetectMultiBackend
18
- from utils.general import (check_img_size, non_max_suppression, scale_boxes)
19
- from utils.plots import Annotator, colors
20
- from utils.torch_utils import select_device
21
-
22
- # YOLOv9 모델 로드
23
- device = select_device('')
24
- model = DetectMultiBackend('./weights/nsfw_detector_e_rok.pt', device=device, dnn=False, data=None, fp16=False)
25
- stride, names, pt = model.stride, model.names, model.pt
26
- imgsz = check_img_size((640, 640), s=stride) # check image size
27
-
28
- def process_image(image, conf_threshold, iou_threshold, label_mode):
29
- # 이미지 전처리
30
- im = torch.from_numpy(image).to(device).permute(2, 0, 1) # HWC to CHW
31
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
32
- im /= 255 # 0 - 255 to 0.0 - 1.0
33
- if len(im.shape) == 3:
34
- im = im[None] # expand for batch dim
35
-
36
- # 이미지 크기 조정
37
- im = torch.nn.functional.interpolate(im, size=imgsz, mode='bilinear', align_corners=False)
38
-
39
- # 추론
40
- pred = model(im, augment=False, visualize=False)
41
- if isinstance(pred, list):
42
- pred = pred[0] # 첫 번째 요소 선택 (일반적으로 단일 이미지 추론의 경우)
43
-
44
- # NMS
45
- pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
46
-
47
- # 결과 처리
48
- img = image.copy()
49
-
50
- harmful_label_list = []
51
- annotations = []
52
-
53
- for i, det in enumerate(pred): # per image
54
- if len(det):
55
- # Rescale boxes from img_size to im0 size
56
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
57
-
58
- # Write results
59
- for *xyxy, conf, cls in reversed(det):
60
- c = int(cls) # integer class
61
- if c != 6:
62
- harmful_label_list.append(c)
63
-
64
- annotation = {
65
- 'xyxy': xyxy,
66
- 'conf': conf,
67
- 'cls': c,
68
- 'label': f"{names[c]} {conf:.2f}" if label_mode == "Draw Confidence" else f"{names[c]}"
69
- }
70
- annotations.append(annotation)
71
-
72
- if harmful_label_list:
73
- gr.Error("Warning, this is a harmful image.")
74
- # 이미지 전체를 흐리게 처리
75
- img = cv2.GaussianBlur(img, (125, 125), 0)
76
- else:
77
- gr.Info('This is a safe image.')
78
-
79
- # Annotator 적용
80
- annotator = Annotator(img, line_width=3, example=str(names))
81
-
82
- for ann in annotations:
83
- if label_mode == "Draw box":
84
- annotator.box_label(ann['xyxy'], None, color=colors(ann['cls'], True))
85
- elif label_mode in ["Draw Label", "Draw Confidence"]:
86
- annotator.box_label(ann['xyxy'], ann['label'], color=colors(ann['cls'], True))
87
- elif label_mode == "Censor Predictions":
88
- cv2.rectangle(img, (int(ann['xyxy'][0]), int(ann['xyxy'][1])), (int(ann['xyxy'][2]), int(ann['xyxy'][3])), (0, 0, 0), -1)
89
-
90
- return annotator.result()
91
-
92
- def detect_nsfw(input_image, conf_threshold, iou_threshold, label_mode):
93
- if isinstance(input_image, str): # URL input
94
- response = requests.get(input_image)
95
- image = Image.open(BytesIO(response.content))
96
- else: # File upload
97
- image = Image.fromarray(input_image)
98
-
99
- image = np.array(image)
100
- if len(image.shape) == 2: # grayscale
101
- image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
102
- elif image.shape[2] == 4: # RGBA
103
- image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
104
-
105
- # 이미지 크기 조정
106
- image = cv2.resize(image, imgsz)
107
-
108
- processed_image = process_image(image, conf_threshold, iou_threshold, label_mode)
109
- return processed_image
110
-
111
- # Gradio 인터페이스 설정
112
- demo = gr.Interface(
113
- fn=detect_nsfw,
114
- inputs=[
115
- gr.Image(type="numpy", label="Upload an image or enter a URL"),
116
- gr.Slider(0, 1, value=0.45, label="Confidence Threshold"),
117
- gr.Slider(0, 1, value=0.45, label="Overlap Threshold"),
118
- gr.Dropdown(["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"], label="Label Display Mode", value="Draw box")
119
- ],
120
- outputs=gr.Image(type="numpy", label="Processed Image"),
121
- title="YOLOv9 NSFW Content Detection",
122
- description="Upload an image or enter a URL to detect NSFW content using YOLOv9."
123
- )
124
-
125
- if __name__ == "__main__":
126
- demo.launch(server_name="0.0.0.0")
 
1
+ from fastapi import FastAPI, File, UploadFile, Form
2
+ from utils.api import process_image_api
3
+
4
+ app = FastAPI()
5
+
6
+ @app.post("/process_image/")
7
+ async def process_image_endpoint(
8
+ file: UploadFile = File(...),
9
+ conf_threshold: float = Form(0.25),
10
+ iou_threshold: float = Form(0.45),
11
+ label_mode: str = Form("Draw Confidence")
12
+ ):
13
+ return await process_image_api(file, conf_threshold, iou_threshold, label_mode)
14
+
15
+ # Gunicorn용 app 변수
16
+ application = app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gradio_app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ from PIL import Image
5
+ import requests
6
+ from io import BytesIO
7
+ import torch
8
+ import sys
9
+ from pathlib import Path
10
+ import os
11
+ FILE = Path(__file__).resolve()
12
+ ROOT = FILE.parents[0] # YOLOv5 root directory
13
+ if str(ROOT) not in sys.path:
14
+ sys.path.append(str(ROOT)) # add ROOT to PATH
15
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
16
+
17
+ from models.common import DetectMultiBackend
18
+ from utils.general import (check_img_size, non_max_suppression, scale_boxes)
19
+ from utils.plots import Annotator, colors
20
+ from utils.torch_utils import select_device
21
+
22
+ # YOLOv9 모델 로드
23
+ device = select_device('')
24
+ model = DetectMultiBackend('./weights/nsfw_detector_e_rok.pt', device=device, dnn=False, data=None, fp16=False)
25
+ stride, names, pt = model.stride, model.names, model.pt
26
+ imgsz = check_img_size((640, 640), s=stride) # check image size
27
+
28
+ def process_image(image, conf_threshold, iou_threshold, label_mode):
29
+ # 이미지 전처리
30
+ im = torch.from_numpy(image).to(device).permute(2, 0, 1) # HWC to CHW
31
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
32
+ im /= 255 # 0 - 255 to 0.0 - 1.0
33
+ if len(im.shape) == 3:
34
+ im = im[None] # expand for batch dim
35
+
36
+ # 이미지 크기 조정
37
+ im = torch.nn.functional.interpolate(im, size=imgsz, mode='bilinear', align_corners=False)
38
+
39
+ # 추론
40
+ pred = model(im, augment=False, visualize=False)
41
+ if isinstance(pred, list):
42
+ pred = pred[0] # 첫 번째 요소 선택 (일반적으로 단일 이미지 추론의 경우)
43
+
44
+ # NMS
45
+ pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
46
+
47
+ # 결과 처리
48
+ img = image.copy()
49
+
50
+ harmful_label_list = []
51
+ annotations = []
52
+
53
+ for i, det in enumerate(pred): # per image
54
+ if len(det):
55
+ # Rescale boxes from img_size to im0 size
56
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
57
+
58
+ # Write results
59
+ for *xyxy, conf, cls in reversed(det):
60
+ c = int(cls) # integer class
61
+ if c != 6:
62
+ harmful_label_list.append(c)
63
+
64
+ annotation = {
65
+ 'xyxy': xyxy,
66
+ 'conf': conf,
67
+ 'cls': c,
68
+ 'label': f"{names[c]} {conf:.2f}" if label_mode == "Draw Confidence" else f"{names[c]}"
69
+ }
70
+ annotations.append(annotation)
71
+
72
+ if harmful_label_list:
73
+ gr.Error("Warning, this is a harmful image.")
74
+ # 이미지 전체를 흐리게 처리
75
+ img = cv2.GaussianBlur(img, (125, 125), 0)
76
+ else:
77
+ gr.Info('This is a safe image.')
78
+
79
+ # Annotator 적용
80
+ annotator = Annotator(img, line_width=3, example=str(names))
81
+
82
+ for ann in annotations:
83
+ if label_mode == "Draw box":
84
+ annotator.box_label(ann['xyxy'], None, color=colors(ann['cls'], True))
85
+ elif label_mode in ["Draw Label", "Draw Confidence"]:
86
+ annotator.box_label(ann['xyxy'], ann['label'], color=colors(ann['cls'], True))
87
+ elif label_mode == "Censor Predictions":
88
+ cv2.rectangle(img, (int(ann['xyxy'][0]), int(ann['xyxy'][1])), (int(ann['xyxy'][2]), int(ann['xyxy'][3])), (0, 0, 0), -1)
89
+
90
+ return annotator.result()
91
+
92
+ def detect_nsfw(input_image, conf_threshold, iou_threshold, label_mode):
93
+ if isinstance(input_image, str): # URL input
94
+ response = requests.get(input_image)
95
+ image = Image.open(BytesIO(response.content))
96
+ else: # File upload
97
+ image = Image.fromarray(input_image)
98
+
99
+ image = np.array(image)
100
+ if len(image.shape) == 2: # grayscale
101
+ image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
102
+ elif image.shape[2] == 4: # RGBA
103
+ image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
104
+
105
+ # 이미지 크기 조정
106
+ image = cv2.resize(image, imgsz)
107
+
108
+ processed_image = process_image(image, conf_threshold, iou_threshold, label_mode)
109
+ return processed_image
110
+
111
+ # Gradio 인터페이스 설정
112
+ demo = gr.Interface(
113
+ fn=detect_nsfw,
114
+ inputs=[
115
+ gr.Image(type="numpy", label="Upload an image or enter a URL"),
116
+ gr.Slider(0, 1, value=0.45, label="Confidence Threshold"),
117
+ gr.Slider(0, 1, value=0.45, label="Overlap Threshold"),
118
+ gr.Dropdown(["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"], label="Label Display Mode", value="Draw box")
119
+ ],
120
+ outputs=gr.Image(type="numpy", label="Processed Image"),
121
+ title="YOLOv9 NSFW Content Detection",
122
+ description="Upload an image or enter a URL to detect NSFW content using YOLOv9."
123
+ )
124
+
125
+ if __name__ == "__main__":
126
+ demo.launch(server_name="0.0.0.0")
utils/api.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import File, UploadFile, Form
2
+ from fastapi.responses import JSONResponse
3
+ from PIL import Image
4
+ import io
5
+ import numpy as np
6
+ import torch
7
+
8
+ from .general import non_max_suppression, scale_boxes
9
+ from models.common import DetectMultiBackend
10
+ from .torch_utils import select_device
11
+
12
+ # 모델 로드
13
+ device = select_device('')
14
+ model = DetectMultiBackend('weights/nsfw_detector_e_rok.pt', device=device, dnn=False, data='data/coco128.yaml', fp16=False)
15
+ names = model.names
16
+ imgsz = (640, 640)
17
+
18
+ async def process_image_api(
19
+ file: UploadFile = File(...),
20
+ conf_threshold: float = Form(0.25),
21
+ iou_threshold: float = Form(0.45),
22
+ label_mode: str = Form("Draw Confidence")
23
+ ):
24
+ contents = await file.read()
25
+ image = Image.open(io.BytesIO(contents))
26
+ image_np = np.array(image)
27
+
28
+ result = process_image(image_np, conf_threshold, iou_threshold, label_mode)
29
+
30
+ return JSONResponse(content={"result": result.result})
31
+
32
+ def process_image(image, conf_threshold, iou_threshold, label_mode):
33
+ # 이미지 전처리
34
+ im = torch.from_numpy(image).to(device).permute(2, 0, 1) # HWC to CHW
35
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
36
+ im /= 255 # 0 - 255 to 0.0 - 1.0
37
+ if len(im.shape) == 3:
38
+ im = im[None] # expand for batch dim
39
+
40
+ # 이미지 크기 조정
41
+ im = torch.nn.functional.interpolate(im, size=imgsz, mode='bilinear', align_corners=False)
42
+
43
+ # 추론
44
+ pred = model(im, augment=False, visualize=False)
45
+ if isinstance(pred, list):
46
+ pred = pred[0] # 첫 번째 요소 선택 (일반적으로 단일 이미지 추론의 경우)
47
+
48
+ # NMS
49
+ pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
50
+
51
+ # 결과 처리
52
+ img = image.copy()
53
+
54
+ harmful_label_list = []
55
+ annotations = []
56
+
57
+ for i, det in enumerate(pred): # per image
58
+ if len(det):
59
+ # Rescale boxes from img_size to im0 size
60
+ det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
61
+
62
+ # Write results
63
+ for *xyxy, conf, cls in reversed(det):
64
+ c = int(cls) # integer class
65
+ if c != 6:
66
+ harmful_label_list.append(c)
67
+
68
+ annotation = {
69
+ 'xyxy': xyxy,
70
+ 'conf': float(conf),
71
+ 'cls': c,
72
+ 'label': f"{names[c]} {conf:.2f}" if label_mode == "Draw Confidence" else f"{names[c]}"
73
+ }
74
+ annotations.append(annotation)
75
+
76
+ result = 'nsfw' if harmful_label_list else 'nomal'
77
+ return ProcessResponse(result=result)
78
+
79
+ class ProcessResponse:
80
+ def __init__(self, result: int):
81
+ self.result = result
82
+ # self.annotations = annotations
utils/gunicorn_config.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ workers = 1
2
+ worker_class = "uvicorn.workers.UvicornWorker"
3
+ bind = '0.0.0.0:8001'