LearningnRunning commited on
Commit
1f840b7
·
1 Parent(s): 76b6140

ADD ReadMe.md

Browse files
Files changed (1) hide show
  1. README.md +63 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Adult Image Detector
3
- emoji: 📚
4
  colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
@@ -11,3 +11,65 @@ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Adult Image Detector
3
+ emoji: 🚨
4
  colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ # Adult Image Detector
16
+
17
+ ## Model Description
18
+
19
+ This model is a custom-trained version of YOLOv9-e, pre-trained on a custom dataset. YOLOv9 (You Only Look Once version 9) is a state-of-the-art object detection model known for its speed and accuracy.
20
+
21
+ ## Model Details
22
+
23
+ - **Model Architecture:** YOLOv9-e
24
+ - **Number of Layers:** 1,119
25
+ - **Number of Parameters:** 69,366,830
26
+ - **GFLOPs:** 243.4
27
+
28
+ ## Training
29
+
30
+ The model was trained for 10 epochs on a custom dataset. The training process showed consistent improvement in performance metrics.
31
+
32
+ ### Training Hyperparameters
33
+
34
+ - **Initial Learning Rate (lr0):** 0.070011
35
+ - **Final Learning Rate (lr1, lr2):** 0.00208
36
+
37
+ ### Training Results
38
+
39
+ | Metric | Initial Value (Epoch 0) | Final Value (Epoch 9) |
40
+ |--------|-------------------------|------------------------|
41
+ | train/box_loss | 1.8995 | 1.4264 |
42
+ | train/cls_loss | 2.644 | 1.1627 |
43
+ | train/dfl_loss | 1.9846 | 1.6321 |
44
+ | metrics/precision | 0.70196 | 0.69025 |
45
+ | metrics/recall | 0.44274 | 0.69178 |
46
+ | metrics/mAP_0.5 | 0.45088 | 0.7167 |
47
+ | metrics/mAP_0.5:0.95 | 0.27358 | 0.47964 |
48
+
49
+ ## Performance
50
+
51
+ The model showed significant improvement over the course of training:
52
+
53
+ - **[email protected]:** Increased from 0.45088 to 0.7167
54
+ - **[email protected]:0.95:** Improved from 0.27358 to 0.47964
55
+ - **Precision:** Maintained around 0.69-0.70
56
+ - **Recall:** Substantially improved from 0.44274 to 0.69178
57
+
58
+ ## Usage
59
+
60
+ This model can be loaded and used with YOLOv5 compatible frameworks. Here's an example of how to load the model:
61
+
62
+ ```python
63
+ from ultralytics import YOLO
64
+
65
+ model = YOLO('path/to/your/model.pt')
66
+ results = model('path/to/image.jpg')
67
+ ```
68
+
69
+ ## Limitations and Biases
70
+
71
+ As this model was trained on a custom dataset, it may have biases or limitations specific to that dataset. Users should evaluate the model's performance on their specific use case before deployment.
72
+
73
+ ## Additional Information
74
+
75
+ For more details on the YOLOv9 architecture and its capabilities, please refer to the official YOLOv9 documentation and research paper.