Commit
·
3a53eae
1
Parent(s):
9e31b92
FIX path error
Browse files- app.py +29 -108
- config/settings.py +2 -1
- models/common.py +17 -1
- utils/data_processing.py +2 -2
app.py
CHANGED
@@ -1,126 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
import requests
|
6 |
-
from io import BytesIO
|
7 |
-
import torch
|
8 |
import sys
|
9 |
from pathlib import Path
|
10 |
import os
|
|
|
|
|
11 |
FILE = Path(__file__).resolve()
|
12 |
-
ROOT = FILE.parents[0]
|
13 |
if str(ROOT) not in sys.path:
|
14 |
-
sys.path.append(str(ROOT))
|
15 |
-
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
|
16 |
|
17 |
-
from models.common import DetectMultiBackend
|
18 |
-
from utils.general import (check_img_size, non_max_suppression, scale_boxes)
|
19 |
-
from utils.plots import Annotator, colors
|
20 |
-
from utils.torch_utils import select_device
|
21 |
|
22 |
-
# YOLOv9 모델 로드
|
23 |
-
device = select_device('')
|
24 |
-
model = DetectMultiBackend('./weights/nsfw_detector_e_rok.pt', device=device, dnn=False, data=None, fp16=False)
|
25 |
-
stride, names, pt = model.stride, model.names, model.pt
|
26 |
-
imgsz = check_img_size((640, 640), s=stride) # check image size
|
27 |
|
28 |
-
def process_image(image, conf_threshold, iou_threshold, label_mode):
|
29 |
-
# 이미지 전처리
|
30 |
-
im = torch.from_numpy(image).to(device).permute(2, 0, 1) # HWC to CHW
|
31 |
-
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
32 |
-
im /= 255 # 0 - 255 to 0.0 - 1.0
|
33 |
-
if len(im.shape) == 3:
|
34 |
-
im = im[None] # expand for batch dim
|
35 |
-
|
36 |
-
# 이미지 크기 조정
|
37 |
-
im = torch.nn.functional.interpolate(im, size=imgsz, mode='bilinear', align_corners=False)
|
38 |
-
|
39 |
-
# 추론
|
40 |
-
pred = model(im, augment=False, visualize=False)
|
41 |
-
if isinstance(pred, list):
|
42 |
-
pred = pred[0] # 첫 번째 요소 선택 (일반적으로 단일 이미지 추론의 경우)
|
43 |
-
|
44 |
-
# NMS
|
45 |
-
pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
|
46 |
|
47 |
-
# 결과 처리
|
48 |
-
img = image.copy()
|
49 |
-
|
50 |
-
harmful_label_list = []
|
51 |
-
annotations = []
|
52 |
-
|
53 |
-
for i, det in enumerate(pred): # per image
|
54 |
-
if len(det):
|
55 |
-
# Rescale boxes from img_size to im0 size
|
56 |
-
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
57 |
-
|
58 |
-
# Write results
|
59 |
-
for *xyxy, conf, cls in reversed(det):
|
60 |
-
c = int(cls) # integer class
|
61 |
-
if c != 6:
|
62 |
-
harmful_label_list.append(c)
|
63 |
-
|
64 |
-
annotation = {
|
65 |
-
'xyxy': xyxy,
|
66 |
-
'conf': conf,
|
67 |
-
'cls': c,
|
68 |
-
'label': f"{names[c]} {conf:.2f}" if label_mode == "Draw Confidence" else f"{names[c]}"
|
69 |
-
}
|
70 |
-
annotations.append(annotation)
|
71 |
-
|
72 |
-
if harmful_label_list:
|
73 |
-
gr.Error("Warning, this is a harmful image.")
|
74 |
-
# 이미지 전체를 흐리게 처리
|
75 |
-
img = cv2.GaussianBlur(img, (125, 125), 0)
|
76 |
-
else:
|
77 |
-
gr.Info('This is a safe image.')
|
78 |
-
|
79 |
-
# Annotator 적용
|
80 |
-
annotator = Annotator(img, line_width=3, example=str(names))
|
81 |
-
|
82 |
-
for ann in annotations:
|
83 |
-
if label_mode == "Draw box":
|
84 |
-
annotator.box_label(ann['xyxy'], None, color=colors(ann['cls'], True))
|
85 |
-
elif label_mode in ["Draw Label", "Draw Confidence"]:
|
86 |
-
annotator.box_label(ann['xyxy'], ann['label'], color=colors(ann['cls'], True))
|
87 |
-
elif label_mode == "Censor Predictions":
|
88 |
-
cv2.rectangle(img, (int(ann['xyxy'][0]), int(ann['xyxy'][1])), (int(ann['xyxy'][2]), int(ann['xyxy'][3])), (0, 0, 0), -1)
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
if isinstance(input_image, str): # URL input
|
94 |
-
response = requests.get(input_image)
|
95 |
-
image = Image.open(BytesIO(response.content))
|
96 |
-
else: # File upload
|
97 |
-
image = Image.fromarray(input_image)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
102 |
-
elif image.shape[2] == 4: # RGBA
|
103 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
|
104 |
|
105 |
-
|
106 |
-
image = cv2.resize(image, imgsz)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
fn=detect_nsfw,
|
114 |
-
inputs=[
|
115 |
-
gr.Image(type="numpy", label="Upload an image or enter a URL"),
|
116 |
-
gr.Slider(0, 1, value=0.3, label="Confidence Threshold"),
|
117 |
-
gr.Slider(0, 1, value=0.45, label="Overlap Threshold"),
|
118 |
-
gr.Dropdown(["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"], label="Label Display Mode", value="Draw box")
|
119 |
-
],
|
120 |
-
outputs=gr.Image(type="numpy", label="Processed Image"),
|
121 |
-
title="YOLOv9 NSFW Content Detection",
|
122 |
-
description="Upload an image or enter a URL to detect NSFW content using YOLOv9."
|
123 |
-
)
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
demo.launch(server_name="0.0.0.0")
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
import os
|
5 |
+
from utils.data_processing import detect_nsfw
|
6 |
+
# Import YOLO-related modules
|
7 |
FILE = Path(__file__).resolve()
|
8 |
+
ROOT = FILE.parents[0]
|
9 |
if str(ROOT) not in sys.path:
|
10 |
+
sys.path.append(str(ROOT))
|
11 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
|
12 |
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Gradio interface
|
18 |
+
with gr.Blocks() as demo:
|
19 |
+
gr.Markdown("# NSFW Content Detection")
|
20 |
+
with gr.Row():
|
21 |
+
detection_mode = gr.Radio(["Simple Check", "Detailed Analysis"], label="Detection Mode", value="Simple Check")
|
22 |
+
with gr.Row():
|
23 |
+
conf_threshold = gr.Slider(0, 1, value=0.3, label="Confidence Threshold", visible=False)
|
24 |
+
iou_threshold = gr.Slider(0, 1, value=0.45, label="Overlap Threshold", visible=False)
|
25 |
+
label_mode = gr.Dropdown(["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"], label="Label Display Mode", value="Draw box", visible=False)
|
26 |
+
|
27 |
+
with gr.Row():
|
28 |
+
input_image = gr.Image(type="numpy", label="Upload an image or enter a URL")
|
29 |
+
output_text = gr.Textbox(label="Detection Result")
|
30 |
+
with gr.Row():
|
31 |
+
output_image = gr.Image(type="numpy", label="Processed Image (for detailed analysis)", visible=False)
|
32 |
|
33 |
+
detect_button = gr.Button("Detect")
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
def update_visibility(mode):
|
36 |
+
return [gr.update(visible=(mode == "Detailed Analysis"))] * 4
|
|
|
|
|
|
|
37 |
|
38 |
+
detection_mode.change(update_visibility, inputs=[detection_mode], outputs=[conf_threshold, iou_threshold, label_mode, output_image])
|
|
|
39 |
|
40 |
+
detect_button.click(
|
41 |
+
detect_nsfw,
|
42 |
+
inputs=[input_image, detection_mode, conf_threshold, iou_threshold, label_mode],
|
43 |
+
outputs=[output_text, output_image]
|
44 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
demo.launch(server_name="0.0.0.0")
|
config/settings.py
CHANGED
@@ -3,4 +3,5 @@ import os
|
|
3 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
4 |
|
5 |
# MODEL_PATH를 절대 경로로 설정
|
6 |
-
|
|
|
|
3 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
4 |
|
5 |
# MODEL_PATH를 절대 경로로 설정
|
6 |
+
DETECT_MODEL_PATH = os.path.join(BASE_DIR, 'weights', 'yolov9_c_nsfw.pt')
|
7 |
+
CLASSIFICATION_MODEL_PATH = "Falconsai/nsfw_image_detection"
|
models/common.py
CHANGED
@@ -21,6 +21,7 @@ import torch.nn as nn
|
|
21 |
from IPython.display import display
|
22 |
from PIL import Image
|
23 |
from torch.cuda import amp
|
|
|
24 |
|
25 |
from utils import TryExcept
|
26 |
from utils.dataloaders import exif_transpose, letterbox
|
@@ -29,7 +30,7 @@ from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suff
|
|
29 |
xywh2xyxy, xyxy2xywh, yaml_load)
|
30 |
from utils.plots import Annotator, colors, save_one_box
|
31 |
from utils.torch_utils import copy_attr, smart_inference_mode
|
32 |
-
|
33 |
|
34 |
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
35 |
# Pad to 'same' shape outputs
|
@@ -1198,3 +1199,18 @@ class Classify(nn.Module):
|
|
1198 |
if isinstance(x, list):
|
1199 |
x = torch.cat(x, 1)
|
1200 |
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
from IPython.display import display
|
22 |
from PIL import Image
|
23 |
from torch.cuda import amp
|
24 |
+
from transformers import AutoModelForImageClassification, ViTImageProcessor
|
25 |
|
26 |
from utils import TryExcept
|
27 |
from utils.dataloaders import exif_transpose, letterbox
|
|
|
30 |
xywh2xyxy, xyxy2xywh, yaml_load)
|
31 |
from utils.plots import Annotator, colors, save_one_box
|
32 |
from utils.torch_utils import copy_attr, smart_inference_mode
|
33 |
+
from config.settings import CLASSIFICATION_MODEL_PATH
|
34 |
|
35 |
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
36 |
# Pad to 'same' shape outputs
|
|
|
1199 |
if isinstance(x, list):
|
1200 |
x = torch.cat(x, 1)
|
1201 |
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
1202 |
+
|
1203 |
+
class NSFWModel:
|
1204 |
+
def __init__(self):
|
1205 |
+
self.model = AutoModelForImageClassification.from_pretrained(CLASSIFICATION_MODEL_PATH)
|
1206 |
+
self.processor = ViTImageProcessor.from_pretrained(CLASSIFICATION_MODEL_PATH)
|
1207 |
+
self.id2label = self.model.config.id2label
|
1208 |
+
|
1209 |
+
def predict(self, image: Image.Image) -> str:
|
1210 |
+
with torch.no_grad():
|
1211 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
1212 |
+
outputs = self.model(**inputs)
|
1213 |
+
logits = outputs.logits
|
1214 |
+
predicted_label = logits.argmax(-1).item()
|
1215 |
+
|
1216 |
+
return self.id2label[predicted_label]
|
utils/data_processing.py
CHANGED
@@ -10,14 +10,14 @@ from models.common import DetectMultiBackend, NSFWModel
|
|
10 |
from utils.torch_utils import select_device
|
11 |
from utils.general import (check_img_size, non_max_suppression, scale_boxes)
|
12 |
from utils.plots import Annotator, colors
|
13 |
-
|
14 |
|
15 |
# Load classification model
|
16 |
nsfw_model = NSFWModel()
|
17 |
|
18 |
# Load YOLO model
|
19 |
device = select_device('')
|
20 |
-
yolo_model = DetectMultiBackend(
|
21 |
stride, names, pt = yolo_model.stride, yolo_model.names, yolo_model.pt
|
22 |
imgsz = check_img_size((640, 640), s=stride)
|
23 |
|
|
|
10 |
from utils.torch_utils import select_device
|
11 |
from utils.general import (check_img_size, non_max_suppression, scale_boxes)
|
12 |
from utils.plots import Annotator, colors
|
13 |
+
from config.settings import MODEL_PATH
|
14 |
|
15 |
# Load classification model
|
16 |
nsfw_model = NSFWModel()
|
17 |
|
18 |
# Load YOLO model
|
19 |
device = select_device('')
|
20 |
+
yolo_model = DetectMultiBackend(DETECT_MODEL_PATH, device=device, dnn=False, data=None, fp16=False)
|
21 |
stride, names, pt = yolo_model.stride, yolo_model.names, yolo_model.pt
|
22 |
imgsz = check_img_size((640, 640), s=stride)
|
23 |
|