Commit
·
9e31b92
1
Parent(s):
a8f267e
FEAT SImple version
Browse files- app.py +2 -3
- utils/data_processing.py +126 -0
app.py
CHANGED
@@ -18,11 +18,10 @@ from models.common import DetectMultiBackend
|
|
18 |
from utils.general import (check_img_size, non_max_suppression, scale_boxes)
|
19 |
from utils.plots import Annotator, colors
|
20 |
from utils.torch_utils import select_device
|
21 |
-
from config.settings import MODEL_PATH
|
22 |
|
23 |
# YOLOv9 모델 로드
|
24 |
device = select_device('')
|
25 |
-
model = DetectMultiBackend(
|
26 |
stride, names, pt = model.stride, model.names, model.pt
|
27 |
imgsz = check_img_size((640, 640), s=stride) # check image size
|
28 |
|
@@ -114,7 +113,7 @@ demo = gr.Interface(
|
|
114 |
fn=detect_nsfw,
|
115 |
inputs=[
|
116 |
gr.Image(type="numpy", label="Upload an image or enter a URL"),
|
117 |
-
gr.Slider(0, 1, value=0.
|
118 |
gr.Slider(0, 1, value=0.45, label="Overlap Threshold"),
|
119 |
gr.Dropdown(["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"], label="Label Display Mode", value="Draw box")
|
120 |
],
|
|
|
18 |
from utils.general import (check_img_size, non_max_suppression, scale_boxes)
|
19 |
from utils.plots import Annotator, colors
|
20 |
from utils.torch_utils import select_device
|
|
|
21 |
|
22 |
# YOLOv9 모델 로드
|
23 |
device = select_device('')
|
24 |
+
model = DetectMultiBackend('./weights/nsfw_detector_e_rok.pt', device=device, dnn=False, data=None, fp16=False)
|
25 |
stride, names, pt = model.stride, model.names, model.pt
|
26 |
imgsz = check_img_size((640, 640), s=stride) # check image size
|
27 |
|
|
|
113 |
fn=detect_nsfw,
|
114 |
inputs=[
|
115 |
gr.Image(type="numpy", label="Upload an image or enter a URL"),
|
116 |
+
gr.Slider(0, 1, value=0.3, label="Confidence Threshold"),
|
117 |
gr.Slider(0, 1, value=0.45, label="Overlap Threshold"),
|
118 |
gr.Dropdown(["Draw box", "Draw Label", "Draw Confidence", "Censor Predictions"], label="Label Display Mode", value="Draw box")
|
119 |
],
|
utils/data_processing.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from models.common import DetectMultiBackend, NSFWModel
|
10 |
+
from utils.torch_utils import select_device
|
11 |
+
from utils.general import (check_img_size, non_max_suppression, scale_boxes)
|
12 |
+
from utils.plots import Annotator, colors
|
13 |
+
|
14 |
+
|
15 |
+
# Load classification model
|
16 |
+
nsfw_model = NSFWModel()
|
17 |
+
|
18 |
+
# Load YOLO model
|
19 |
+
device = select_device('')
|
20 |
+
yolo_model = DetectMultiBackend('./weights/nsfw_detector_e_rok.pt', device=device, dnn=False, data=None, fp16=False)
|
21 |
+
stride, names, pt = yolo_model.stride, yolo_model.names, yolo_model.pt
|
22 |
+
imgsz = check_img_size((640, 640), s=stride)
|
23 |
+
|
24 |
+
def resize_and_pad(image, target_size):
|
25 |
+
ih, iw = image.shape[:2]
|
26 |
+
target_h, target_w = target_size
|
27 |
+
|
28 |
+
# 이미지의 가로세로 비율 계산
|
29 |
+
scale = min(target_h/ih, target_w/iw)
|
30 |
+
|
31 |
+
# 새로운 크기 계산
|
32 |
+
new_h, new_w = int(ih * scale), int(iw * scale)
|
33 |
+
|
34 |
+
# 이미지 리사이즈
|
35 |
+
resized = cv2.resize(image, (new_w, new_h))
|
36 |
+
|
37 |
+
# 패딩 계산
|
38 |
+
pad_h = (target_h - new_h) // 2
|
39 |
+
pad_w = (target_w - new_w) // 2
|
40 |
+
|
41 |
+
# 패딩 추가
|
42 |
+
padded = cv2.copyMakeBorder(resized, pad_h, target_h-new_h-pad_h, pad_w, target_w-new_w-pad_w, cv2.BORDER_CONSTANT, value=[0,0,0])
|
43 |
+
|
44 |
+
return padded
|
45 |
+
|
46 |
+
def process_image_yolo(image, conf_threshold, iou_threshold, label_mode):
|
47 |
+
# Image preprocessing
|
48 |
+
im = torch.from_numpy(image).to(device).permute(2, 0, 1)
|
49 |
+
im = im.half() if yolo_model.fp16 else im.float()
|
50 |
+
im /= 255
|
51 |
+
if len(im.shape) == 3:
|
52 |
+
im = im[None]
|
53 |
+
|
54 |
+
# Resize image
|
55 |
+
im = torch.nn.functional.interpolate(im, size=imgsz, mode='bilinear', align_corners=False)
|
56 |
+
|
57 |
+
# Inference
|
58 |
+
pred = yolo_model(im, augment=False, visualize=False)
|
59 |
+
if isinstance(pred, list):
|
60 |
+
pred = pred[0]
|
61 |
+
|
62 |
+
# NMS
|
63 |
+
pred = non_max_suppression(pred, conf_threshold, iou_threshold, None, False, max_det=1000)
|
64 |
+
|
65 |
+
# Process results
|
66 |
+
img = image.copy()
|
67 |
+
harmful_label_list = []
|
68 |
+
annotations = []
|
69 |
+
|
70 |
+
for i, det in enumerate(pred):
|
71 |
+
if len(det):
|
72 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
73 |
+
|
74 |
+
for *xyxy, conf, cls in reversed(det):
|
75 |
+
c = int(cls)
|
76 |
+
if c != 6:
|
77 |
+
harmful_label_list.append(c)
|
78 |
+
|
79 |
+
annotation = {
|
80 |
+
'xyxy': xyxy,
|
81 |
+
'conf': conf,
|
82 |
+
'cls': c,
|
83 |
+
'label': f"{names[c]} {conf:.2f}" if label_mode == "Draw Confidence" else f"{names[c]}"
|
84 |
+
}
|
85 |
+
annotations.append(annotation)
|
86 |
+
|
87 |
+
if 4 in harmful_label_list and 10 in harmful_label_list:
|
88 |
+
gr.Warning("Warning: This image is featuring underwear.")
|
89 |
+
elif harmful_label_list:
|
90 |
+
gr.Error("Warning: This image may contain harmful content.")
|
91 |
+
img = cv2.GaussianBlur(img, (125, 125), 0)
|
92 |
+
else:
|
93 |
+
gr.Info('This image appears to be safe.')
|
94 |
+
|
95 |
+
annotator = Annotator(img, line_width=3, example=str(names))
|
96 |
+
|
97 |
+
for ann in annotations:
|
98 |
+
if label_mode == "Draw box":
|
99 |
+
annotator.box_label(ann['xyxy'], None, color=colors(ann['cls'], True))
|
100 |
+
elif label_mode in ["Draw Label", "Draw Confidence"]:
|
101 |
+
annotator.box_label(ann['xyxy'], ann['label'], color=colors(ann['cls'], True))
|
102 |
+
elif label_mode == "Censor Predictions":
|
103 |
+
cv2.rectangle(img, (int(ann['xyxy'][0]), int(ann['xyxy'][1])), (int(ann['xyxy'][2]), int(ann['xyxy'][3])), (0, 0, 0), -1)
|
104 |
+
|
105 |
+
return annotator.result()
|
106 |
+
|
107 |
+
def detect_nsfw(input_image, detection_mode, conf_threshold=0.3, iou_threshold=0.45, label_mode="Draw box"):
|
108 |
+
if isinstance(input_image, str): # URL input
|
109 |
+
response = requests.get(input_image)
|
110 |
+
image = Image.open(BytesIO(response.content))
|
111 |
+
else: # File upload
|
112 |
+
image = Image.fromarray(input_image)
|
113 |
+
|
114 |
+
image_np = np.array(image)
|
115 |
+
if len(image_np.shape) == 2: # grayscale
|
116 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
|
117 |
+
elif image_np.shape[2] == 4: # RGBA
|
118 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
119 |
+
|
120 |
+
if detection_mode == "Simple Check":
|
121 |
+
result = nsfw_model.predict(image)
|
122 |
+
return result, None
|
123 |
+
else: # Detailed Analysis
|
124 |
+
image_np = resize_and_pad(image_np, imgsz) # 여기서 imgsz는 (640, 640)
|
125 |
+
processed_image = process_image_yolo(image_np, conf_threshold, iou_threshold, label_mode)
|
126 |
+
return "Detailed analysis completed. See the image for results.", processed_image
|